
Thesis for The Degree of Doctor of Philosophy

Synthesis and Repair for

Functional Programming:

A Type- and Test-Driven Approach

Matthías Páll Gissurarson

Division of Computing Science
Department of Computer Science & Engineering

Chalmers University of Technology
Gothenburg, Sweden, 2024



Synthesis and Repair for Functional Programming:
A Type- and Test-Driven Approach

Matthías Páll Gissurarson

Copyright ©2024 Matthías Páll Gissurarson
except where otherwise stated.
All rights reserved.

ISBN 978-91-8103-079-2
Doktorsavhandlingar vid Chalmers tekniska högskola.
Ny serie ISSN 0346-718X.
ISSN 0346-718X

Technical Report No 5537

Department of Computer Science & Engineering
Division of Computing Science
Chalmers University of Technology
Gothenburg, Sweden

This thesis has been prepared using LATEX.
Printed by Chalmers Reproservice,
Gothenburg, Sweden 2024.

ii



“Deyr fé,
deyja frændur,

deyr sjálfu ið sama
en orðstír deyr aldregi

hveim er sér góðan getur.”
- Hávamál.





Abstract

Modern programs in languages like Haskell include a lot of information
beyond what is required for compilation. This includes unit tests, property-
based tests, and type annotations more speci�c than those necessary to re-
solve ambiguity. This additional speci�cation is usually only used for post-
compilation veri�cation by running the tests to verify that the code-as-written
matches the speci�cation the types and properties provide.

In this thesis, we explore ways of going beyond veri�cation, and how this
additional information can aid the developer during development. This can
be done in multiple ways, for example, by helping the programmer write an
implementation that matches the speci�cation, by helping them track down
the source of a bug in the implementation, and automatically repairing an
implementation that does not match the speci�cation.

In the �rst part, I explore the integration of program synthesis into GHC
compiler error messages using typed-hole suggestions to aid completion of
partial programs during development. In the second part, we present PropR,
an automatic repair tool. PropR is based on type-driven synthesis, guided by
property-based testing and fault localization in conjunction with genetic al-
gorithms. A rich speci�cation is required for these approaches to be e�ective.
This motivates the third part of this thesis, where we present Spectacular, a
speci�cation synthesis tool. Spectacular uses ECTA-based synthesis to au-
tomatically infer properties of programs, letting us bootstrap speci�cations
from previous versions. In the fourth and �fth part of this thesis, we present
the lightweight trace-based and spectrum-based fault localization tools CSI:
Haskell and TastySpectrum respectively, and explore how we can localize
program faults and �nd likely sources of a bug.

Keywords: Compilers, Types, Tests, Program Synthesis, Program Repair

v





Acknowledgments

My sincerest thanks to my supervisor, David Sands, for getting me through
some very tough times, and getting this WASP project where I could continue
working on typed-holes and synthesis despite earlier setbacks in my PhD.

Special thanks to my co-supervisors, Alejandro Russo and Martin Mon-
perrus, for their input on my work and many good times at various confer-
ences and visits! And thanks to my examiner John Hughes for setting the
bar high, pushing me to do even better.

And thanks to my PhD committee for their feedback on this thesis! Espe-
cially Nadia Polikarpova, whose opposition as my licentiate opponent drove
me to a higher evaluation standard.

I want to thank the PhD crew for a lot of fun times; the old crew (Nachi,
Agustín, Carlos, Alejandro, Elisabet, Abhiroop, Jeremy, Irene, Fabian, Mo-
hammad, Ivan, Benjamin), as well as the new one (Hanna, Robert, Prabhat,
Henrik, Lorenzo, Piero, Victor, Luque, Wincent, Katya).

Huge thanks to my co-author of many papers Leonhard Applis, with-
out whom this thesis would be a lot shorter. Turns out bringing functional
programming to software engineers and software engineering to functional
programmers is in hot demand!

Thanks to Matthew Sottile for many Zoom calls and a lot of advice through-
out. Many times, I’ve been stumped by something but helpfully pointed in
the right direction by him over Zoom. Thanks!

vii



Acknowledgments

Throughout my PhD, I’ve been quite active on Twitter (now X). Thanks
to all my mutuals and their advice throughout the years! I’ve also been active
in the Haskell community. I want to especially thank the GHC team. None of
this this would have been possible without their work throughout the years.

To my friends and family back in Iceland, for all their support in get-
ting me to where I am today: Mamma, Pabbi, Elísabet, Amma og A� heitinn,
Björn, Konni, Hákon, Óli, Styrmir, Birkir, Magnús Karl, Gabríela, Ragnheiður,
Þeódóra, Gunnlaugur, Haukur, Bjarki, og Magnús Pálsson. Takk fyrir mig!
Án ykkar hefði ég aldrei nennt þessu.

Last but not least, I want to thank my wife Anandi and the Rajans for
their love and support over the years!

This research was supported by a grant from the Wallenberg AI, Autonomous
Systems and Software Program (WASP) funded by the Knuth and Alice Wal-
lenberg Foundation.

viii



Contents

1 Introduction 1

1.1 Motivation and Overview . . . . . . . . . . . . . . . . . . . . 1
1.2 Background and Related Work . . . . . . . . . . . . . . . . . 5

1.2.1 Haskell . . . . . . . . . . . . . . . . . . . . . . . . . . 5
1.2.2 Glasgow Haskell Compiler (GHC) . . . . . . . . . . . 6
1.2.3 Typed–Holes . . . . . . . . . . . . . . . . . . . . . . 6
1.2.4 Program Synthesis . . . . . . . . . . . . . . . . . . . 10
1.2.5 Automatic Program Repair . . . . . . . . . . . . . . . 12
1.2.6 Property–Based Testing . . . . . . . . . . . . . . . . 14

1.3 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
1.3.1 PrIM: PropR Improved . . . . . . . . . . . . . . . . . 16
1.3.2 Re–Thinking Compiler Design . . . . . . . . . . . . 20

1.4 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
1.5 Thesis structure . . . . . . . . . . . . . . . . . . . . . . . . . 23
Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

2 Suggesting Valid Hole Fits for Typed-Holes 31

2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
2.1.1 Contributions . . . . . . . . . . . . . . . . . . . . . . 34
2.1.2 Background . . . . . . . . . . . . . . . . . . . . . . . 35

2.2 Case Studies . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
2.2.1 Exercise from Programming in Haskell . . . . . . . . 36
2.2.2 The Lens Library . . . . . . . . . . . . . . . . . . . . 37

2.3 Implementation . . . . . . . . . . . . . . . . . . . . . . . . . 38
2.3.1 Inputs & Outputs . . . . . . . . . . . . . . . . . . . . 38
2.3.2 Relevant Constraints . . . . . . . . . . . . . . . . . . 39
2.3.3 Candidates . . . . . . . . . . . . . . . . . . . . . . . 39
2.3.4 Checking for Fit . . . . . . . . . . . . . . . . . . . . . 39
2.3.5 Re�nement hole �ts . . . . . . . . . . . . . . . . . . 40
2.3.6 Sorting the Output . . . . . . . . . . . . . . . . . . . 40

ix



Contents

2.3.7 Dealing with Side-e�ects . . . . . . . . . . . . . . . . 41
2.4 An Additional Application . . . . . . . . . . . . . . . . . . . 42
2.5 Related Work & Ideas . . . . . . . . . . . . . . . . . . . . . . 44
2.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

2.6.1 Future Work . . . . . . . . . . . . . . . . . . . . . . . 45
2.6.2 Current Status . . . . . . . . . . . . . . . . . . . . . 46

Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

3 PropR: Property–Based Automatic Program Repair 49

3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
3.2 Background and Related Work . . . . . . . . . . . . . . . . . 53

3.2.1 Property-Based Testing . . . . . . . . . . . . . . . . 53
3.2.2 Haskell, GHC & Typed Holes . . . . . . . . . . . . . 54
3.2.3 GenProg, Genetic Program Repair and Patch Repre-

sentation . . . . . . . . . . . . . . . . . . . . . . . . . 56
3.2.4 Repair of Formally Veri�ed Programs and Program

Syn-thesis . . . . . . . . . . . . . . . . . . . . . . . . 56
3.3 Technical Details — PropR . . . . . . . . . . . . . . . . . . . 58

3.3.1 Compiler-Driven Mutation . . . . . . . . . . . . . . . 59
3.3.2 Fixes . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
3.3.3 Checking Fixes . . . . . . . . . . . . . . . . . . . . . 63
3.3.4 Search . . . . . . . . . . . . . . . . . . . . . . . . . . 65
3.3.5 Looping and Finalizing Results . . . . . . . . . . . . 66

3.4 Empirical Study . . . . . . . . . . . . . . . . . . . . . . . . . 66
3.4.1 Research Questions . . . . . . . . . . . . . . . . . . . 66
3.4.2 Dataset . . . . . . . . . . . . . . . . . . . . . . . . . 68
3.4.3 Methodology / Experiment Design . . . . . . . . . . 69

3.5 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70
3.6 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75
3.7 Threats to Validity . . . . . . . . . . . . . . . . . . . . . . . . 77
3.8 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78
3.9 Online Resources . . . . . . . . . . . . . . . . . . . . . . . . 78
Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

4 Spectacular 87

4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . 89
4.2 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

4.2.1 Equality-Constrained Tree Automata (ECTAs) . . . . 91
4.2.2 QuickCheck and the QuickSpec problem . . . . . . . 94

4.3 The Spectacular tool . . . . . . . . . . . . . . . . . . . . . . 96
4.3.1 Signatures . . . . . . . . . . . . . . . . . . . . . . . . 96

x



Contents

4.3.2 Supplying Givens . . . . . . . . . . . . . . . . . . . . 96
4.3.3 Enumerating Terms . . . . . . . . . . . . . . . . . . . 97
4.3.4 Pruning . . . . . . . . . . . . . . . . . . . . . . . . . 99
4.3.5 Interleaving Testing and Enumeration . . . . . . . . 100
4.3.6 Testing of Terms . . . . . . . . . . . . . . . . . . . . 101
4.3.7 Generalization of Laws . . . . . . . . . . . . . . . . . 101

4.4 Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103
4.4.1 Improvements upon �ickSpec . . . . . . . . . . . . 105

4.5 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . 107
4.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110
Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115

5 CSI: Haskell 121

5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . 123
5.2 Background and Related Work . . . . . . . . . . . . . . . . . 126
5.3 Approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130

5.3.1 Evaluation Trees . . . . . . . . . . . . . . . . . . . . 130
5.3.2 Trace Data . . . . . . . . . . . . . . . . . . . . . . . . 131
5.3.3 Example . . . . . . . . . . . . . . . . . . . . . . . . . 133
5.3.4 Persistence and Tix Upgrades . . . . . . . . . . . . . 134
5.3.5 Output . . . . . . . . . . . . . . . . . . . . . . . . . . 134
5.3.6 Summarization and Presentation . . . . . . . . . . . 136
5.3.7 Data . . . . . . . . . . . . . . . . . . . . . . . . . . . 137

5.4 Initial Results . . . . . . . . . . . . . . . . . . . . . . . . . . 138
5.5 Next Steps . . . . . . . . . . . . . . . . . . . . . . . . . . . . 150
5.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . 152
Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 155

6 Functional Spectrums for Fault Localization 161

6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . 163
6.1.1 Example . . . . . . . . . . . . . . . . . . . . . . . . . 163
6.1.2 Contributions . . . . . . . . . . . . . . . . . . . . . . 166

6.2 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . 169
6.3 Implementation & Experiment Setup . . . . . . . . . . . . . 170

6.3.1 Spectrum Generation . . . . . . . . . . . . . . . . . . 170
6.3.2 Rules . . . . . . . . . . . . . . . . . . . . . . . . . . . 171
6.3.3 Data . . . . . . . . . . . . . . . . . . . . . . . . . . . 174
6.3.4 Experimental Setup . . . . . . . . . . . . . . . . . . . 175

6.4 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 177
6.5 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . 185

6.5.1 Future Work . . . . . . . . . . . . . . . . . . . . . . . 187

xi



Contents

6.6 Related Work and Conclusion . . . . . . . . . . . . . . . . . 188
6.6.1 Conclusion . . . . . . . . . . . . . . . . . . . . . . . 188

Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 193

xii



1
Introduction

1.1 Motivation and Overview

Motivation

When developers write programs, they do so with speci�c goals in mind and
some idea of how to achieve these goals. Traditionally, they communicate
these goals and ideas to the computer using text in the form of source code,
including the term–level implementation, and, in languages like Haskell, a
type–level speci�cation that lives alongside the implementation. They often
model the intended behavior by providing type annotations alongside their
functions and variables, as well as a suite of tests that demonstrates the in-
tended runtime behavior of the program. The packaged source code and tests
taken as a whole then provide much more information to the compiler than
merely the implementation. Half of the time spent programming is spent on
debugging [6], which means that developers are working on almost complete
programs. As the programs are almost complete, there are usually some tests
available (at least for the bug that is being �xed), and the types involved have
stabilized. This places a lot of constraints on the possible valid implementa-
tions of the program, which we can use to synthesize �xes to suggest to the
developer and guide them towards a correct solution. With a su�ciently rich
speci�cation, we can even automatically repair an incorrect implementation.

1



1. Introduction

However, in modern programming practice, this information is used in
a yes–or–no manner: Does the program type check? Does it pass the test
suite? In this thesis, I show how to go beyond the yes–or–no use case and
make better use of the information already present in the source package for:

• Program synthesis using valid hole–�ts in GHC,

• Automatic program repair with PropR,

• Test suite bootstrapping and discovery using Spectacular,

• Trace–based fault localization using CSI: Haskell, and �nally

• Spectrum–based fault localization using TastySpectrum.

Overview

Program synthesis is very computationally heavy, making it intractable
to synthesize large programs. A more focused approach is required. But how
should we direct that focus?

Typed–Holes In this thesis, we make heavy use of typed–holes. The pro-
grammer speci�es a typed–hole during development, usually using an un-
derscore (_), as seen in �gure 1.1.

minimumOrBound :: [Int] -> Int
minimumOrBound [] = _

minimumOrBound (x:xs) = min x (minimumOrBound xs)

Figure 1.1: An example of a program with a hole in it.

These typed–holes allow us to focus our synthesis e�orts on that partic-
ular part of the program to �ll the hole. By integrating with the compiler
(GHC) and its constraint–based type checker, we can come up with (synthe-
size) identi�ers and expressions such that we can replace the hole and the
resulting program would be valid, i.e., well–typed. An example can be seen
in �gure 1.2. Synthesizing these valid–hole �ts for typed–holes is explored
in–depth in the �rst paper of this thesis [11].

2



1.1. Motivation and Overview

• Found hole: _ :: Int
• In an equation for ‘minimumOrBound’: minimumOrBound [] = _

• Relevant bindings include
minimum :: [Int] -> Int (bound at f.hs:4:1)

Valid hole fits include
maxBound :: forall a. Bounded a => a
with maxBound @Int
(imported from ‘Prelude’ at f.hs:1:1-31
(and originally defined in ‘GHC.Enum’))

minBound :: forall a. Bounded a => a
with minBound @Int
(imported from ‘Prelude’ at f.hs:1:1-31
(and originally defined in ‘GHC.Enum’))

Figure 1.2: A program with a hole in it and the GHC error.

Automatic Program Repair It is not enough for a program to be merely
type–correct. As we see in �gure 1.3, even if the types are correct, the pro-
gram can still be wrong. In more advanced type systems, like that of Agda,
correctness can be fully speci�ed in the types. However, in weaker type sys-
tems like that of Haskell, we have to resort to runtime veri�cation in the form
of a test suite.

minimumOrBound :: [Int] -> Int
minimumOrBound [] = minBound -- BUG: Should be maxBound
minimumOrBound (x:xs) = min x (minimumOrBound xs)

Figure 1.3: An incorrect implementation

By adding a test suite, the programmer sees that the program is not cor-
rect: it always returns minBound!

prop_unit :: Bool
prop_unit = minimumOrBound [2,1,3] == 1

prop_is_min :: [Int] -> Bool
prop_is_min xs = let m = minimumOrBound xs

in null (filter (< m) xs)

Figure 1.4: A minimal test suite for our example

The programmer could, of course, realize their mistake and change minBound
to maxBound, which is the right solution and passes the test suite.

3



1. Introduction

The next step is to automate this process: instead of having the program-
mer manually choose which parts of the program to focus the synthesis and
repair on, we can run the tests and pick likely candidates to target.

By replacing parts of the code with holes, synthesizing valid–hole �ts
for those holes, and re–running the test suite to see if we are closer to a so-
lution, we should eventually be able to repair any program. This can scale
to programs that require multiple �xes, by using genetic algorithms to com-
bine multiple solutions that partially repair a program into one solution that
passes the entire test suite. This approach is explored in detail in [17].

minimumOrBound :: [Int] -> Int
minimumOrBound [] = maxBound
minimumOrBound (x:xs) = min x (minimumOrBound xs)

Figure 1.5: The correct implementation

Synthesizing Speci�cations This approach relies on us being able to syn-
thesize good hole–�t candidates and, moreover, the availability of a good test
suite. This is not always the case, especially with older programs. In the third
paper [18] in this thesis, we explore how we can use a recent synthesis tech-
nique based on equality–constrained tree–automata (ECTAs) to e�ciently
synthesize multi–term Haskell expressions directly from the types as seen
by the compiler, and how we can synthesize a speci�cation using equiva-
lence classes for large programs.

Fault Localization Being able to synthesize good candidates is not enough;
we have to be able to e�ectively determine where to target our synthesis. The
next two papers in this thesis [15, 16] focus on improving fault localization
for functional programs. In the fourth paper, CSI: Haskell, we extend the
compiler to add low–level tracing of Haskell programs, and to capture the
su�x of that trace. In the case of in�nite loops or errors, the su�x of the
trace allows us to determine which parts were recently evaluated and which
parts were evaluated earlier and less likely to be the cause of the error or loop.
Similarly, when the bug is caused by invalid data being consumed, the fact
that they are likely to be recently evaluated in a lazy language like Haskell
allows us to more quickly localize the fault. By focusing on recent locations,
we could speed up program repair considerably.

The �fth paper on functional spectrums implements spectrum collection
and spectrum–based fault localization for the popular Haskell testing frame-
work Tasty. A spectrum is essentially a matrix of tests, the locations each
of them touches and whether they failed or not. Plugging these into various

4



1.2. Background and Related Work

formulas, we can quantify the suspiciousness of each location, which indi-
cates how strongly we believe it to be the cause of the fault. In the future
work section, we describe how we can combine the previous work into an
improved version of PropR.

1.2 Background and Related Work

For a better understanding of the work in this thesis and its context, we
must elaborate on the components involved and the related work in the �eld.
Speci�cally, we:

• Introduce the Haskell programming language and the Glasgow Haskell
Compiler (GHC) with which our explorations have been conducted,

• give a brief overview of program synthesis and the speci�c techniques
we use to synthesize �xes,

• explain property–based testing that allows us to verify our synthesis,

• have look at automatic program repair and genetic programming that
allows us to scale program repair beyond single �xes,

• Examine the equality–constrained tree automata (ECTAs) that allow
us to e�ciently synthesize multi–term Haskell expressions, and �nally,

• fault localization using spectrum–based methods and program tracing.

1.2.1 Haskell

Our explorations are conducted in the functional programming language
Haskell, which sports a strong type system with rich type–inference and
non–strict evaluation by default. This means that analysis can often be done
on an expression–by–expression basis, without having to consider side ef-
fects. It also allows us to trace programs and closely observe the data �ow.
The strong type system and type–inference means that the information that
the user provides can be further extrapolated, and the popular property–
based testing framework QuickCheck (see section 1.2.6) pushes this even fur-
ther, allowing users to write properties that are extrapolated into tests that
cover many more cases than a comparable number of unit tests.

5



1. Introduction

Prelude> (_ "hello, world") :: [String]
<interactive>:1:2: error:
• Found hole: _ :: [Char] -> [String]
• In the expression: _

In the expression: (_ "hello, world") :: [String]
In an equation for ‘it’: it = (_ "hello, world") :: [String]

• Relevant bindings include
it :: [String] (bound at <interactive>:1:1)

Figure 1.6: An example of a typed–hole error message in GHCi 8.10.6.

1.2.2 Glasgow Haskell Compiler (GHC)

The Glasgow Haskell Compiler (GHC) is a state–of–the–art, industrial–strength
compiler for Haskell, widely used in academia and industry. GHC has a few
features that are particularly relevant to our exploration:

• GHC has support for typed–holes (see section 1.2.3), which we can use
to direct our e�orts and query the compiler for relevant information,

• GHC has a compiler plugin infrastructure that allows you to intervene
at certain stages of compilation (such as after desugaring, or during
type checking) and inject your own behavior, making it particularly
suitable for experimentation, as you can modify parts of the compila-
tion pipeline without digging into the compiler’s internals, and

• GHC is easy to extend, as I did with my initial valid hole–�t sugges-
tions (presented in the �rst paper of this thesis [11]) and the subsequent
hole–�t plugins (see section 1.2.3). These were initially implemented
by me as a compiler fork and eventually integrated into the o�cial
compiler release versions 8.6 and 8.10, respectively.

• GHC has built–in program coverage (HPC) that allows us to instru-
ment any library or package to collect traces and spectrums.

1.2.3 Typed–Holes

A typed–hole is a hole in the context of a program, with a type and its con-
straints inferred by the compiler as if the hole were a free variable. Inspired
by a similar feature in Agda, a minimal implementation of typed–holes was
initially added to GHC in version 7.8 [12]. An example of the typed–hole in
(_ "hello, world") :: [String] can be seen in �gure 1.6.

6



1.2. Background and Related Work

Finding Valid Hole–Fits

Valid hole–�ts were inspired by typed–hole suggestions in the PureScript
compiler, but a similar automatic proof–search was available earlier in Agda
as the auto command [12].

Valid hole fits include
lines :: String -> [String]
words :: String -> [String]
repeat :: forall a. a -> [a]
with repeat @String

return :: forall (m :: * -> *) a. Monad m => a -> m a
with return @[] @String

fail :: forall (m :: * -> *) a. MonadFail m => String -> m a
with fail @[] @String

pure :: forall (f :: * -> *) a. Applicative f => a -> f a
with pure @[] @String

(Some hole fits suppressed; ...)

Figure 1.7: An example of valid hole–�ts in GHCi, continued from the out-
put in �gure 1.6. Presented without imports

As detailed in the �rst paper of this thesis and in my master’s thesis [11,
12], valid hole–�ts are found by constructing an appropriate equality type for
each of the candidate hole–�ts and invoking GHC’s type checker. The can-
didate hole–�ts are drawn from the global environment (imports, top–level
functions, etc.) or the local context (such as function arguments or locally
let– or where–bound variables). In the hole in �gure 1.7, the type of the can-
didate hole–�ts are, e.g., the types of the valid hole–�ts, String -> [String]

and forall a. a -> [a], but also the types of other non–valid candidates,
such as the type of otherwise :: Bool, the type of [] :: forall a. [a], the
type of map :: (a -> b) -> [a] -> [b], etc. We feed the type checker with
each of the equality types, as well as context of the hole, and any relevant
constraints1, and ask the solver to solve the equality. If a solution is possible,
then there is a way to unify the type–variables in the type of the hole and
the type of the candidate hole–�t so that the types match (e.g., setting a to
String in forall a. a -> [a] to get String -> [String]), and the candi-
date hole–�t is then a valid–hole �t. An overview of the process of �nding
valid hole–�ts is shown in �gure 1.8.

1As an example of relevant constraints, the hole in (show _) will get the type a where
a is an unbound type–variable and the relevant constraints is the set {Show a}.

7



1. Introduction

Local context Global environment

Candidates

Relevant Constraints

Givens

Type checker/  
Constraint Solver

Filter by checking 
whether type can 
be made to match

Output

Sort by approximate relevance 
(by size or by subsumption)

Type of hole

Generate subtyping wrapper 
from the type of the candidate 

to the type of the hole 

Figure 1.8: An overview of how valid hole–�t suggestions are found [12].

Re�nement Hole–Fits

Of special interest are re�nement hole–�ts, an extension of valid hole–�ts
not found in PureScript [11]. For re�nement hole–�ts, we allow the can-
didate to have more arguments than the hole, where the number of addi-
tional arguments, 𝑛, is de�ned as the re�nement level. This allows us to
�nd �ts like foldr (_a :: Int -> Int -> Int) (_b :: Int) for the hole
_ :: [Int] -> Int, where _a :: Int -> Int -> Int and _b :: Int are two
new holes (with the re�nement level is 2). An example of re�nement hole–
�ts for the hole in �gure 1.6 can be seen in �gure 1.9.

Re�nement hole–�ts are particularly useful for synthesis, since we can
recursively �ll the additional holes, allowing us to synthesize sophisticated
expressions as hole–�ts. Valid hole–�ts and re�nement hole–�ts are detailed
in the �rst paper of this thesis and in my master’s thesis [11, 12].

Hole–Fit Plugins

Hole–�t plugins are an extension of GHC’s plugin infrastructure that allows
plugin authors to customize the behavior of valid hole–�ts by manipulating
what candidates get checked for validity and which of those hole–�ts found
to be valid are shown to users [13].

8



1.2. Background and Related Work

Valid refinement hole fits include
iterate (_ :: String -> String)
where iterate :: forall a. (a -> a) -> a -> [a]
with iterate @String

replicate (_ :: Int)
where replicate :: forall a. Int -> a -> [a]
with replicate @String

mapM (_ :: Char -> [Char])
where mapM :: forall (t :: * -> *) (m :: * -> *) a b.

(Traversable t, Monad m) =>
(a -> m b) -> t a -> m (t b)

with mapM @[] @[] @Char @Char
traverse (_ :: Char -> [Char])
where traverse :: forall (t :: * -> *) (f :: * -> *) a b.

(Traversable t, Applicative f) =>
(a -> f b) -> t a -> f (t b)

with traverse @[] @[] @Char @Char
map (_ :: Char -> String)
where map :: forall a b. (a -> b) -> [a] -> [b]
with map @Char @String

scanl (_ :: String -> Char -> String) (_ :: [Char])
where scanl :: forall b a. (b -> a -> b) -> b -> [a] -> [b]
with scanl @String @Char

(Some refinement hole fits suppressed; ...)

Figure 1.9: An example of re�nement hole–�ts in GHCi, with the re�ne-
ment level set to 2. Continued from the output in �gure 1.7.
Presented without imports.

This enables us to �lter out candidates from modules and modify the or-
der in which the �ts are returned, allowing for more sophisticated heuristics.
It also allows us to modify the synthesis on a per–hole basis, for instance, by
writing a plugin that allows us to inject expressions mined from the context
as candidate hole–�ts for program repair. An overview of hole–�t–plugins
is shown in �gure 1.102.

Hole–�t plugins also provide an ideal way to inspect and integrate hole–
�t–based synthesis into other tools. Using hole–�t plugins, we can extract
information about the context of a given hole, such as the type, any local
identi�ers (such as function arguments), and global identi�ers (i.e., imports,
top–level bindings) available for synthesis.
In particular, since the hole–�t plugins run in the type checking phase of

2Presented as part of the Haskell Implementors’ Workshop and the ICFP student research
competition in 2019 [13].

9



1. Introduction

Figure 1.10: An overview of typed–hole plugins [13].

GHC’s compilation pipeline, we have access to the types of these identi�ers,
local type–variables, implications (i.e., constraints such as Show a =>, and
crucially, access to the GHC constraint solver. This can be very helpful for
synthesis, as explored in [17, 18].

Limitations

The way typed–holes are implemented in GHC poses some limitations. Cur-
rently, they are based on the “unknown identi�er” functionality and only
generate an error message. However, recent e�orts in, for example, Hazel
have shown that by tightly integrating them into the compiler and the pro-
gramming environment, they can enable a whole di�erent style of program-
ming [29]. We can recover some of this functionality using IDE–plugins such
as the Haskell Language Server (HLS), allowing programmers to interactively
choose valid hole–�ts for typed–holes in their IDE, but it sorely lacks the rich
contextual information present in languages such as Hazel.

1.2.4 Program Synthesis

Program synthesis is the generation of code based on a high–level speci�ca-
tion of how that program should behave [37]. As there is an in�nite number
of programs, restricting the search space is key to practical program synthe-
sis. One way to restrict the search space is to use input–output examples,
such as FlashFill [19]. Using only input–output examples can be limiting,
but works well when the target language is domain–speci�c: this shrinks
the search space by reducing the possible programs that can be written in a
language. Another way to e�ciently synthesize programs is by focusing on
parts of the program, such as in sketching, where users write a high–level
sketch of a program but leave holes for synthesis of low–level details [37].

Type–directed synthesis is especially powerful since there are a lot more
ill–typed programs than well–typed ones, and type–errors can be detected

10



1.2. Background and Related Work

very early [33]. How well type–directed synthesis can perform depends on
the expressiveness of the type system. For example, expressive type systems
such as the re�nement types used in SynQuid allow developers to decorate
types with predicates from a decidable logic, meaning they can more pre-
cisely specify which programs are valid, which improves the program syn-
thesis [33]. However, more expressiveness in the type system comes at the
expense of type–inference. In Haskell, the type of most programs can be
inferred without the developers having to provide type annotations. Type–
directed synthesis has a long history in Haskell, such as the type–based Djinn
synthesizer, which can synthesize Haskell expressions based on the type
[4]. More recent Haskell–based synthesizers include Hoogle+, which uses
type–guided abstract re�nement (TYGAR) to �nd programs composed from
functions in Haskell libraries based on type and input–output examples [20],
and Hectare, which uses an ECTA–based technique to synthesize functions
from the Haskell prelude [22]. Haskell also has some integrated program
synthesis–like features, such as the deriving mechanism that can automati-
cally generate instances for functions like (==) and show [25]. This has later
been extended with the GHC deriving via extension, which allows you to
derive via other instances and gives greater control over how the resulting
instance behaves [5]. However, these only work for type–class instances.

Typed–hole directed synthesis

Typed–hole directed synthesis is a combination of using contextual informa-
tion as in sketching and type information to restrict the search space to only
those programs that satisfy the type, such as the one used in Perelman et al.
for partial expression completion in C# [32] and Myth [31] by Osera et al.

More recent work includes Smyth [24] by Lubin et al., which uses live
bidirectional evaluation to propagate input-output examples generated from
assertions to guide the search, taking it beyond the type–only directed syn-
thesis in this work. In Smyth, they use a language that supports the live
evaluation of code, which includes typed–holes by producing results that are
either values or a “paused” expression that can resume evaluation when the
necessary holes are �lled, a la Omar et al. [24, 29]. A key innovation is
supporting live unevaluation, which allows results to be checked against ex-
amples to compute constraints that, if satis�ed, ensure that the result even-
tually produces a value that satis�es the examples [24]. By eagerly checking
incomplete programs for counterexamples using constraint propagation, the
synthesizer can eagerly discard programs that can never satisfy the examples
[27]. A similar approach has been implemented in Scrybe by Mulleners et al.,
which interleaves re�nements and guesses and allows arbitrary functions to

11



1. Introduction

be used as re�nement steps [27]. Further work by Mulleners et al. on the
realizability of polymorphic programs introduces a technique to determine
whether a solution to a given synthesis problem exists [28].

However, all of these synthesizers work on small examples. It is unclear
if the approach scales to large code bases or can support all Haskell features.
One limitation of example propagation is the exponential growth of con-
straint sizes [27]. The term enumeration approach taken in this work has the
advantage that we can place typed–holes anywhere in a program, enumerate
terms that satisfy the type, �ll the holes, and use the existing GHC toolchain
to e�ciently recompile and check the results with respect to existing test–
suites. Integration with the GHC type–checker allows us to enumerate and
check all possible terms, even those using more advanced language features.
This allows us to do automated program repair even on large code bases,
without having to consider constraint sizes or language feature interactions.

1.2.5 Automatic Program Repair

A practical application of program synthesis is automated program repair,
where we �x bugs in programs according to their speci�cation. There are al-
ready some examples of type–directed program repair, such as Lifty, which
uses the SynQuid re�nement type–based technique to repair security policy
violations in a domain speci�c language [34]. In the second paper of this the-
sis, we investigate the use of type–directed synthesis for automated program
repair. We implemented PropR, a genetic search–based program repair tool
that combines the typed–hole directed synthesis from my �rst paper with
property–based speci�cations to automatically repair Haskell programs [17].

Genetic Program Repair

Genetic program repair is a successful generate–and–validate–based approach
to automated program repair based on genetic search [23, 26]. The approach
is exempli�ed by GenProg, a statement–based automatic program repair for
C–programs, which uses unit tests to determine the locations of faults and
the validity of �xes [23]. The quality of a �x is evaluated based on how
many unit tests they pass, and two �xes are combined into a new �x by
combining partial �xes into a new �x, preferring well–performing �xes to
low–performing �xes [23]. For some programs, this approach can �nd �xes
that eliminate the bug found by the tests [23]. Current state–of–the–art pro-
gram repair tools, such as Astor, have been based on the same approach,
but mainly target Java [26]. A genetic approach allows us to focus on �nd-

12



1.2. Background and Related Work

ing simple partial �xes and combining them, meaning we can do repair on a
per–fault basis rather than having to consider the whole program.

LLM–based Program Repair

Large Language Models (LLMs) have surged in popularity with the release of
GPT3 and ChatGPT in 2022. They have changed the landscape of synthesis
and repair, with many tools [7, 9, 30] based on training and �ne–tuning of
LLMs to synthesize code. Traditional program synthesis techniques strug-
gle with synthesizing large programs, as the search space is too big and the
problem under–speci�ed. We now have tools such as GitHub’s Copilot [9],
ChatGPT [30], and Codex [7], which can generate AI–powered code sugges-
tions [10]. These tools allow programmers to generate massive amounts of
code from short prompts describing what they want.

However, in this thesis, we have not used any LLM–based techniques.
Had they been available in 2018, we certainly would have explored LLMs
for valid hole–�ts, and indeed, a neural network–based approach was sug-
gested when the original typed–hole paper was presented. Training a neural
network on available Haskell code could have been an avenue for ranking
valid–hole �ts, so that the more relevant suggestion would have been listed
earlier than less relevant ones. However, LLM and neural network–based
approaches have their own challenges. One big challenge is one of distribu-
tion and usability: is it feasible to ship a binary blob of weights along with
the compiler simply to provide code suggestions? Is it viable to build GPU
acceleration of token generation in GHC itself? Are users willing to connect
to a cloud service for such suggestions? The existence of services such as
Copilot [9] seems to suggest so, but this is more in the domain of the IDE
than the compiler.

Another challenge is validating AI–powered code suggestions, and de-
termining whether the generated code satis�es the intent of the programmer
[10]. In this thesis, we explore how to perform valid program repair and syn-
thesis, i.e., given a speci�cation in the form of types and tests, we synthesize
programs that are guaranteed to satisfy the speci�cation and tests. I believe
this will be an important tool in the toolbox for LLM–powered program syn-
thesis: The LLM synthesizes an approximate solution, and then apply tools
like PropR and Spectacular (as described in this thesis) to repair the generated
programs to synthesize one that fully satis�es the speci�cation.

13



1. Introduction

1.2.6 Property–Based Testing

Property–based testing frameworks such as QuickCheck [8] allow users to
specify properties that functions must satisfy and can be viewed as an intu-
itive way of specifying what constraints should hold for the program. These
properties are tested by generating arbitrary data based on the type of the
property and verifying that the property holds. This allows one property to
be the equivalent of hundreds or thousands of unit tests and using shrinking
to generate a small counterexample when a property does not hold. These
counterexamples can then be used in conjunction with program coverage to
localize the error by noting which expressions were involved in the evalua-
tion leading to the failure of the property. We use properties and their coun-
terexamples in the second paper of this thesis to guide automated program
repair [17]. In [18], we use an ECTA–based technique to synthesize expres-
sions and partition them into equivalence classes to e�ciently synthesize
properties for large modules.

ECTA–based Synthesis

Equality–Constrained Tree–Automata is a recently introduced synthesis tech-
nique that was applied to Haskell to synthesize programs from the functions
in the Haskell prelude [22]. Equality–constrained tree automata (ECTAs) [22]
are a new data structure for representing and enumerating a large space of
terms with constraints between sub–terms. We go into more detail on how
they work in the introduction in chapter 4. In chapter 4 , we use ECTAs to
synthesize Haskell expressions that correspond to a value that can be com-
pared for equality when applied to some arguments. In this way, we can
automatically discover expressions that have the same value: a property.

Fault Localization

Fault localization is a technique that takes a buggy program and tries to deter-
mine which part of the program causes the bug, based on static and dynamic
analysis. In this thesis, we employ two dynamic fault localization methods,
tracing and spectrum analysis. We do not explore static methods, since the
types of faults detected by static methods are covered in part by the expres-
sive type system in Haskell.

Spectrum–Based Fault Localization

Spectrum–based fault localization (SBFL) is considered one of the most promi-
nent fault localization techniques due to its e�ciency and e�ectiveness [35].

14



1.2. Background and Related Work

With SBFL, we assume the existence of a test suite of both passing and failing
tests and assume that the tests cover the expected behavior. By instrumenting
the code using a coverage tool such as HPC, we can run the test suite and
note the locations involved in each test and whether that test passes or fails.
We use a heuristic called suspiciousness, saying that locations that are more
frequently involved in failing tests than in passing tests are more suspicious.
Using various formulas based on the spectrum, we can assign a suspicious-
ness score to each location in the program based on the number of times
it is evaluated in passing and failing tests, respectively, as well as the total
number of passing and failing tests in the program.

In the PropR paper [17], we use a naive version of SBFL where we only
note the locations that are involved in a failing test and do not consider pass-
ing tests or the total number of tests. We improve this fault localization in
the functional spectrums paper [16], where we introduce the TastySpectrum
library that allows developers to add spectrum generation and analysis to
their test suites. Based on HPC, we add a pass to the test–runner framework,
allowing the spectrum to be collected when the test suite is run. The library
implements spectrum analysis using traditional formula–based methods, as
well as novel rules based on the types and AST structure of the program.
By using a formula–based approach, we can more e�ectively target program
repair by prioritizing parts of the program that involved in failing tests and
avoiding parts common to all tests.

Program Tracing

Program tracing is a technique based on instrumenting a program and cap-
turing which part of the program are evaluated when the program is run (pro-
gram coverage) and, in particular, in which order the expressions in the pro-
gram are evaluated (tracing). This sometimes includes the values involved.

In [15], we introduce CSI: Haskell, which extends GHC’s built–in Haskell
Program Coverage (HPC) to add runtime tracing of Haskell programs. By
collecting a su�x of the trace, we can capture most of the information related
to fault localization, with minimal overhead.

15



1. Introduction

1.3 Future Work

In this thesis, we present PropR, an automatic repair tool for small Haskell
programs. It works well on small programs that are only an identi�er or two
from being correct. However, there is still a long way to go to make it a prac-
tical program repair tool for larger programs and packages with thousands
of lines of code [16].

In this section, we provide a blueprint for how the elements presented
in this thesis can be integrated and combined into a single tool that could
scale much better than the current approach taken by PropR. This tool is
tentatively named PrIM: PropR Improved.

1.3.1 PrIM: PropR Improved

As a step toward practical automatic program repair, we envision an im-
proved version of PropR that draws on the ground work laid out in this thesis.
In particular, for more practical automatic program repair, multiple compo-
nents are required:

• We must scale the synthesis to not be limited to single identi�ers,

• we must be able to repair error–based and non–terminating faults,

• we must more accurately pinpoint parts of the program that should be
targeted for repair, and �nally,

• for unit–test–based test suites, we must to enrich them with property–
based tests to better capture which parts are at fault and which parts
are not.

Integrating ECTA–based synthesis.

In the current design of PropR, valid hole–�ts are generated using a hole–
�t plugin that uses both the valid hole–�ts as suggested by GHC, as well
as expressions extracted from the module being repaired. While re�nement
hole–�ts allow us to iteratively synthesize multi–identi�er expressions, it is
slow in practice. However, we can build on our work from Spectacular [18]
(presented in chapter 4 in this thesis), which uses a hole–�t plugin to query
GHC for the local and global context of a hole and constructs an ECTA using
identi�ers from said context. The ECTA is then used to synthesize expres-
sions that match the type of the hole [18]. By integrating ECTA–based syn-
thesis into the hole–�t synthesis step ( 7 in �gure 1.11) we can make more

16



1.3. Future Work

Failing Properties

Targets

Haskell Program Coverage

GHC + Plugin

Fault-involved Expressions

Candidate Fixes

Source

QuickCheck

Search Algorithm

Fixes

Properties

Di�

Apply Fixes

Hole-Fit Synthesis

Perforated Expressions

Perforation

Candidate Selection

Candidate Evaluation

Inspect Bindings

Fault localization

Test Properties

Rebind In Properties

1

2

3

4

5

6

7
8

9

10

11

Figure 1.11: The PropR test–localize–synthesize–rebind loop

multi–identi�er candidates available. This would make the repair process
faster, both due to the higher–quality candidates, and removing the need to
use the slower re�nement–hole �t process to synthesize bigger expressions,
relegating those to the ECTA instead.

Using the equivalence class–based bucketing in Spectacular, we can en-
sure that we only test unique candidates. Instead of evaluating both [] ::

[Int] and tail [1] :: [Int], we can choose the simplest one, [], and
discard the others. Although less useful for small expressions, this shrinks
the search space for larger expressions.

Integrating Fault Localization.

In step 5 of the PropR repair loop, PropR runs the program and naively
localizes the fault to any location touched by a failing test. Although guar-
anteed to produce a set of locations that contains the fault, we can do better.
To more accurately pinpoint parts of the program that should be targeted, we
must improve fault localization and introduce more sophisticated heuristics.

17



1. Introduction

3 gcd' :: Int -> Int -> Int

4 gcd' 0 b = gcd' 0 b

5 gcd' a b | b == 0 = a

6 gcd' a b =

7 if (a > b)

8 then gcd' (a - b) b

9 else gcd' a (b - a)

Figure 1.12: A gcd function that loops inde�nitely due to a buggy base case.
Rewritten in Haskell from a GenProg example [23].

CSI: Haskell Error–based and non–terminating faults can be di�cult to
repair, since the program halts in an un�nished state and does not produce
any output apart from the error. However, being able to capture what was
being evaluated right before the error occurred and observe the control–�ow
of non–terminating loops lets us more e�ectively handle these types of faults.
Using a version of GHC that implements CSI: Haskell, we can produce a trace
of the code involved in the failing test. This can be especially useful for faults
such as the non–termination in gcd' in �gure 1.12, where the �rst base case
is incorrect. Instead of returning b in the gcd' 0 b case, it instead loops
without doing any work.

Ex: Killed
CallStack (from HasCallStack):
error, called at Ex.hs:19:72 in main:Main

Recently evaluated locations:
Ex.hs:14:78-14:85 "Killed"
Ex.hs:14:71-14:86 (error "Killed")

Previous expressions:
repeats (60 times in window):
Ex.hs:4:1-9:23 Main:gcd'
Ex.hs:4:12-4:19 ... = gcd' 0 b

There were 38347886 evaluations in total but only 250 were recorded.
Re-run again with a bigger trace length for better coverage.

Figure 1.13: The trace generated from running gcd' 0 55, with signal han-
dler to kill the program and produce an error.

As captured by the su�x of the trace, the base case loop is clear: as seen
in �gure 1.13 it is the whole trace! Using this information to guide the search
to focus on the base case, we could repair gcd' much more quickly than we
are able to today.

18



1.3. Future Work

As shown in chapter 5 in this thesis, the source of a fault is often in the top
250 locations in the trace [15]. This is spurred by the fact that Haskell is lazy,
meaning that incorrect values involved in an error are often produced right
before the error occurs, allowing us to observe the production of said values
in the trace [15]. By using the location in the trace as a base for a heuristic
for which locations we target �rst, we would speed up the automatic repair.

Functional Spectrums While the naive approach of considering every lo-
cation involved in a fault as a likely culprit is guaranteed to work, it means
that the search space can become very large. Using the techniques described
in chapter 6 in this thesis to generate a spectrum from the test suite in �g-
ure 1.14, we can more accurately pinpoint the fault. This spectrum captures
that while the �rst test case does not involve the faulty base cases passes, the
test case that only involves the base case fails.

prop_1 = gcd' 1071 1029 == 21

prop_2 = gcd' 0 55 == 55

Figure 1.14: Tests involving gcd' function in �gure 1.12

Table 1.1: A spectrum from running the test suite in �gure 1.14, with a time-
out of 0.5 seconds.

name result Ex.hs:4:17 4:19 4:12-19 5:12 5:17 5:21 ...
prop_1 True 0 0 0 28 28 1 ...
prop_2 False 209562382 209562382 209562382 0 0 0 ...

As seen in table 1.1, it is clear that the fault lies in 4:12–19. Using clas-
sical spectrum–based fault localization algorithms, this would assign a high
suspiciousness score to the faulty base case, and guide the search towards
the faulty expression faster than otherwise.

Improved Repair of Under–Speci�ed Programs.

It is often the case that a module or part of a module is under–speci�ed but
is involved in a failure. Even if there is some speci�cation in the form of unit
tests, we can potentially get better coverage by generating property–based
tests, which would improve the spectrums that we generate. If we have an
older version of the source code or a reference implementation that does not
have the bug, we can use Spectacular [18] to synthesize a speci�cation of
the correct version. The synthesized speci�cation can then be used for fault
localization and repair of the later, buggy version.

19



1. Introduction

Evaluation

If we had all these components in place, I believe that we could scale PropR to
work on much larger programs. One critique of the PropR paper was that the
student dataset used to evaluate was not representative of actual programs.
Originally chosen due to the availability of a comprehensive test suite and
of data points close to a correct implementation, it did not accurately re�ect
real–world Haskell code. Since then, the HasBugs dataset by Applis et al. has
become available [3].

Similar to the Defects4J dataset for Java [21], the HasBugs dataset in-
cludes data points from Haskell projects such as HLS, Cabal, and Pandoc, and
includes descriptions of the bugs, fault locations, locations where �xes were
applied, and tests that cover the bugs. By using the HasBugs dataset instead
of the student dataset, we could more accurately evaluate the e�ectiveness
of the PropR approach on real–world, large–scale Haskell programs.

Another dataset that could be useful is the No�b–Buggy dataset [36].
No�b–buggy consists of programs from the no�b test suite used to bench-
mark and regression test GHC, but with bugs intentionally introduced. This
dataset is useful for evaluating fault localization tools; however, the programs
do not include an extensive test suite, but rather a simplistic suite consisting
of a scripted unit test with no properties. By writing a test suite we could
use no�b–buggy to evaluate automatic program repair tools, and evaluate
the e�ectiveness of the Spectacular approach, by bootstrapping a test suite
from the non–buggy version of the program as a reference implementation.

1.3.2 Re–Thinking Compiler Design

In this thesis, I have already shown how program repair can work for small
functional programs. However, scaling this up to larger programs is a chal-
lenge. This has prompted some ideas for improvements to the Haskell toolchain
to better enable tools such as those described in this thesis.

Infrastructure

A big part of the problem boils down to infrastructure: Most production code
is not written as one large module but spread out over multiple modules and
multiple packages. Compiling and recompiling these after changes are made
takes a lot of time, and running the test suite takes even longer. The approach
we have taken to program repair relies on rapid turnaround in order to be
able to check each guess before moving on to the next. This can be paral-
lelized and run in multiple processes, but the resources and time required to
repair large programs at scale are generally not accessible to your standard

20



1.3. Future Work

programmer. Better support for incremental compilation would greatly im-
prove this situation, allowing us to only recompile the parts of the module
that changed and only rerunning the tests impacted by the change. The ap-
proach taken by Unison [2] is a promising step in this direction. In Unison,
functions are compiled and stored in a database, with references to other
functions stored as indexes to entries in this database. This allows Unison
to avoid recompilation of the whole package and instead only recompile the
function that was changed [2].

Loss of Context

A common detriment to program synthesis is the loss of context. When syn-
thesizing, you want to have as much context as possible, as synthesis is es-
sentially a function of a context to a guess.

Compilers like GHC tend to work on the notion of building up context
during each compilation pass, only to erase most of that context once the
compilation pass has �nished. This means that synthesizers have to redo a
lot of type checking and context building done by the compiler, or, as I have
done in this thesis, integrating the synthesis into the compiler pass itself.
This comes at a cost: any time you want to re–run the synthesis, you have
to start compilation all over again to access the context, and threading the
previous context throughout the compilation passes in case it is useful for
later validation and synthesis.

If we could preserve and make each context available to external tools,
that would greatly improve the synthesis and repair process. One way of
doing so would be to take snapshots at certain points of the compilation
that could be used to restart compilation or access the context at that point.
Another way would be to parameterize compilation over a certain location
allowing us to modify that location and only recompile the changed parts.

21



1. Introduction

1.4 Conclusion

By bringing together all the components of fault localization, targeted syn-
thesis, and e�cient ECTA–based synthesis into a practical program repair
loop like PropR, we have shown that the additional speci�cation found in
test suites and rich typing information available in languages like Haskell
can be used to go beyond just veri�cation and that we can use this informa-
tion to aid programmers during development.

22



1.5. Thesis structure

1.5 Thesis structure

This thesis builds on the work from my licentiate (mid–term) thesis [14], and
contains some overlap in the �rst three chapters. The �rst chapter (introduc-
tion) has been reworked and extended with future work and a relevant new
background section. The second chapter (suggesting valid–hole �ts) is un-
changed and represents the published version of the paper. The third chapter
has been updated to re�ect the �nal camera–ready version of the paper.

Valid Hole–Fits Spectacular

CSI: Haskell
PropR

Functional Spectrums

PrIM: PropR Improved
(Future Work)

Figure 1.15: Thesis Structure Overview

Paper 1:

Suggesting Valid Hole Fits for Typed–Holes (Experience Report) [11]

by Matthías Páll Gissurarson

Suggesting Valid Hole Fits documents the implementation and design of
the synthesis of valid hole–�ts as they initially appeared in GHC. Of particu-
lar interest is the sorting of hole–�ts by "relevance", using either the simplis-
tic number of type constructors (the "size" of the type) heuristic, the more
advanced subsumption sorting, where more "speci�c" types are treated as
more "relevant" than more general types, and re�nement hole–�ts that are
valid hole–�ts that introduce additional holes to be �lled.

Statement of contributions Single authored

Appeared in: Haskell Symposium 2018 (Haskell ’18)

23



1. Introduction

Paper 2:

PropR: Property-Based Automatic Program Repair [17]

by Matthías Páll Gissurarson, Leonhard Applis, Annibale Panichella,

Arie van Deursen, and David Sands

In the PropR paper, we introduce PropR, a tool to automatically repair Haskell
programs using a combination of typed–hole synthesis to repair program ex-
pressions with well–typed replacements and using QuickCheck properties to
verify the repair. We use GHC’s Haskell program coverage functionality to
�gure out which expressions are involved in a fault based on QuickCheck
generated counterexamples to failing properties, a typed–hole valid hole–
�t plugin to generate well–typed replacements as �xes for said expressions,
and a genetic algorithm to select and combine �xes based on QuickCheck
property results after applying a �x.

Statement of contributions I was the main driver behind the paper in
conjunction with Leonhard Applis, who was the joint �rst–author. I imple-
mented the synthesis and repair as well as writing the technical section of
the paper and parts of the introduction, whereas Leonhard focused on the
genetic repair algorithm and the experimental veri�cation.

Appeared in: International Conference on Software Engineering 2022
(ICSE ’22) – Technical Track

Paper 3:

Spectacular: Finding Laws from 25 Trillion Programs [18]

by Matthías Páll Gissurarson, Diego Roque, and James Koppel

Spectacular is a new tool for automatically discovering candidate laws for
use in property–based testing. Incorporating many of the ideas from Quick-
Spec, but using the recently developed technique of ECTAs, Spectacular can
explore vastly larger, fully polymorphic program spaces e�ciently.

Statement of contributions I wrote the implementation of Spectacular
and evaluation, while Diego Roque provided some initial exploration of the
problem and James Koppel provided guidance on the use of ECTAs.

Appeared in: International Conference on Software Testing 2023
(ICST ’23) – Research Track

24



1.5. Thesis structure

Paper 4:

CSI: Haskell – Tracing Lazy Evaluations in a Functional Language [15]

by Matthías Páll Gissurarson and Leonhard Applis

In CSI: Haskell, we extended the Haskell Program Coverage implementation
in GHC to enable runtime tracing of Haskell Programs. In the paper, we
focus on the su�x of such traces and investigate how e�ective at pointing to
faulty locations in the no�b–buggy dataset they are.

Statement of contributions Both authors contributed equally to the pa-
per. I forked GHC and HPC and did the initial idea and design of the problem
and assisted with the analysis on the no�b–buggy data set.

Appeared in: Symposium on Implementation and Application of Functional
Languages 2023 (IFL ’23), and was awarded the Peter Landin Prize for the best
paper presented at the symposium as selected by the program committee [1].

Paper 5:

Functional Spectrums: Exploring Spectrum–Based Fault Localization

in Functional Programming [16]

byLeonhardApplis,Matthías Páll Gissurarson, andAnnibale Panichella

In Functional Spectrums, we implemented an additional pass to the Tasty
test framework and associated GHC plugin to create typed–augmented spec-
trums for fault localization for functional programs. In the paper, we inves-
tigate how e�ective this approach is for the HasBugs data set.

Statement of contributions Both �rst authors contributed equally to the
paper. I implemented the ingredient and library that extracts the spectrums,
as well as the GHC plugin for extracting typing information and most of the
rule–based system for quantifying the various values involved.

Manuscript

25





Bibliography

[1] IFL ’23: Proceedings of the 35th Symposium on Implementation and Appli-
cation of Functional Languages, New York, NY, USA, 2023. Association
for Computing Machinery.

[2] The Unison team . The Unsion Language . Website, 2024. https://

www.unison-lang.org/docs/.

[3] L. Applis and A. Panichella. HasBugs - Handpicked Haskell Bugs. In 2023
IEEE/ACM 20th International Conference on Mining Software Repositories
(MSR), pages 223–227, Melbourne, Australia, 2023. IEEE/ACM.

[4] L. Augustsson. The Djinn package, 2014.

[5] B. Blöndal, A. Löh, and R. Scott. Deriving Via: Or, how to turn hand-
written instances into an anti-pattern. In Proceedings of the 11th ACM
SIGPLAN International Symposium on Haskell, pages 55–67, 2018.

[6] T. Britton, L. Jeng, G. Carver, P. Cheak, and T. Katzenellenbogen. Re-
versible debugging software. Judge Bus. School, Univ. Cambridge, Cam-
bridge, UK, Tech. Rep, 2013.

[7] M. Chen, J. Tworek, H. Jun, Q. Yuan, H. P. de Oliveira Pinto, J. Ka-
plan, H. Edwards, Y. Burda, N. Joseph, G. Brockman, A. Ray, R. Puri,
G. Krueger, M. Petrov, H. Khlaaf, G. Sastry, P. Mishkin, B. Chan, S. Gray,
N. Ryder, M. Pavlov, A. Power, L. Kaiser, M. Bavarian, C. Winter, P. Tillet,
F. P. Such, D. Cummings, M. Plappert, F. Chantzis, E. Barnes, A. Herbert-
Voss, W. H. Guss, A. Nichol, A. Paino, N. Tezak, J. Tang, I. Babuschkin,
S. Balaji, S. Jain, W. Saunders, C. Hesse, A. N. Carr, J. Leike, J. Achiam,
V. Misra, E. Morikawa, A. Radford, M. Knight, M. Brundage, M. Mu-
rati, K. Mayer, P. Welinder, B. McGrew, D. Amodei, S. McCandlish,
I. Sutskever, and W. Zaremba. Evaluating Large Language Models
Trained on Code, 2021.

27

https://www.unison-lang.org/docs/
https://www.unison-lang.org/docs/


Bibliography

[8] K. Claessen and J. Hughes. QuickCheck: A Lightweight Tool for Random
Testing of Haskell Programs. In Proceedings of the Fifth ACM SIGPLAN In-
ternational Conference on Functional Programming, ICFP ’00, pages 268–
279, New York, NY, USA, 2000. Association for Computing Machinery.

[9] T. Dohmke. GitHub Copilot is generally available to all developers. The
GitHub Blog (blog), June, 21, 2022.

[10] K. Ferdowsi, R. L. Huang, M. B. James, N. Polikarpova, and S. Lerner.
Validating AI-Generated Code with Live Programming. In Proceedings
of the CHI Conference on Human Factors in Computing Systems, CHI ’24,
New York, NY, USA, 2024. Association for Computing Machinery.

[11] M. P. Gissurarson. Suggesting Valid Hole Fits for Typed–Holes (Expe-
rience Report). In ACM SIGPLAN International Symposium on Haskell,
pages 179–185, 2018. This is the �rst paper in this thesis, and is included
in chapter 2.

[12] M. P. Gissurarson. Suggesting Valid Hole Fits for Typed-Holes in
Haskell. Master’s thesis, Chalmers University of Technology, 2018.

[13] M. P. Gissurarson. Hole Fit Plugins for GHC . Poster presented at the
ICFP Student Research Competition, 2019. Available at https://mpg.
is/papers/gissurarson2019hole.pdf.

[14] M. P. Gissurarson. The Hole Story: Type-Directed Synthesis and Repair,
2022. Licentiate Thesis, Chalmers University of Technology.

[15] M. P. Gissurarson and L. Applis. CSI: Haskell – Tracing Lazy Evalua-
tions in a Functional Language. IFL, 2023. This is the fourth paper in this
thesis, and is included as chapter 5.

[16] M. P. Gissurarson, L. Applis, and A. Panichella. Functional Spectrums:
Exploring Spectrum–Based Fault Localization in Functional Program-
ming. Manuscript, 2024. This is the �fth paper in this thesis, and is
included as chapter 6.

[17] M. P. Gissurarson, L. Applis, A. Panichella, A. van Deursen, and
D. Sands. PropR: Property-Based Automatic Program Repair. ACM 44th
International Conference on Software Engineering (ICSE), 2022. This is
the second paper in this thesis, and is included as chapter 3.

[18] M. P. Gissurarson, D. Roque, and J. Koppel. Spectacular: Finding Laws
from 25 Trillion Programs. In ICST, page 13, 2023. This is the third paper
in this thesis, and is included in chapter 4.

28

https://mpg.is/papers/gissurarson2019hole.pdf
https://mpg.is/papers/gissurarson2019hole.pdf


Bibliography

[19] S. Gulwani. Automating String Processing in Spreadsheets Using Input-
Output Examples. SIGPLAN Not., 46(1):317–330, Jan 2011.

[20] M. B. James, Z. Guo, Z. Wang, S. Doshi, H. Peleg, R. Jhala, and N. Po-
likarpova. Digging for Fold: Synthesis-Aided API Discovery for Haskell.
Proc. ACM Program. Lang., 4(OOPSLA), Nov 2020.

[21] R. Just, D. Jalali, and M. D. Ernst. Defects4J: A database of existing faults
to enable controlled testing studies for Java programs. In Proceedings of
the 2014 international symposium on software testing and analysis, pages
437–440, 2014.

[22] J. Koppel, Z. Guo, et al. Searching Entangled Program Spaces. Proceed-
ings of the ACM on Programming Languages, 1(ICFP), 2022.

[23] C. Le Goues, T. Nguyen, S. Forrest, and W. Weimer. GenProg: A Generic
Method for Automatic Software Repair. IEEE Transactions on Software
Engineering, 38(1):54–72, 2012.

[24] J. Lubin, N. Collins, C. Omar, and R. Chugh. Program sketching with
live bidirectional evaluation. Proc. ACM Program. Lang., 4(ICFP), Aug
2020.

[25] J. P. Magalhães, A. Dijkstra, J. Jeuring, and A. Löh. A generic deriving
mechanism for haskell. SIGPLAN Not., 45(11):37–48, sep 2010.

[26] M. Martinez and M. Monperrus. Astor: Exploring the design space of
generate-and-validate program repair beyond GenProg. Journal of Sys-
tems and Software, 151:65–80, 2019.

[27] N. Mulleners, J. Jeuring, and B. Heeren. Program Synthesis Using Ex-
ample Propagation. In Practical Aspects of Declarative Languages, pages
20–36, Cham, 2023. Springer Nature Switzerland.

[28] N. Mulleners, J. Jeuring, and B. Heeren. Example-Based Reasoning
about the Realizability of Polymorphic Programs. volume 8, New York,
NY, USA, Aug 2024. Association for Computing Machinery.

[29] C. Omar, I. Voysey, R. Chugh, and M. A. Hammer. Live functional pro-
gramming with typed holes. Proceedings of the ACM on Programming
Languages, 3(POPL):1–32, 2019.

[30] OpenAI et al. GPT-4 technical report, 2024.

29



Bibliography

[31] P.-M. Osera and S. Zdancewic. Type-and-Example-Directed Program
Synthesis. SIGPLAN Not., 50(6):619–630, Jun 2015.

[32] D. Perelman, S. Gulwani, T. Ball, and D. Grossman. Type-directed com-
pletion of partial expressions. In PLDI ’12, Proc. the 33rd ACM SIGPLAN
Conference on Programming Language Design and Implementation, pages
275–286. ACM, 2012.

[33] N. Polikarpova, I. Kuraj, and A. Solar-Lezama. Program Synthesis from
Polymorphic Re�nement Types. In Proceedings of the 37th ACM SIGPLAN
Conference on Programming Language Design and Implementation, PLDI
’16, pages 522–538, New York, NY, USA, 2016. Association for Computing
Machinery.

[34] N. Polikarpova, D. Stefan, J. Yang, S. Itzhaky, T. Hance, and A. Solar-
Lezama. Liquid Information Flow Control. Proc. ACM Program. Lang.,
4(ICFP), Aug 2020.

[35] Q. I. Sarhan and A. Beszedes. A Survey of Challenges in Spectrum-Based
Software Fault Localization. IEEE Access, 10:10618–10639, 2022.

[36] J. Silva. The Buggy Benchmarks Collection, 2007. Josep Silva self-
published on his website / university.

[37] A. Solar-Lezama. Program synthesis by sketching. University of Califor-
nia, Berkeley, 2008.

30



2
Suggesting Valid Hole Fits

for Typed–Holes (Experi-

ence Report)

Ma�hías Páll Gissurarson

Haskell Symposium 2018 (Haskell ’18)

A
bstract. Type systems allow programmers to communicate a par-

tial speci�cation of their program to the compiler using types,
which can then be used to check that the implementation matches the
speci�cation. But can the types be used to aid programmers during de-
velopment? In this experience report I describe the design and imple-
mentation of my lightweight and practical extension to the typed-holes
of GHC that improves user experience by adding a list of valid hole �ts
and re�nement hole �ts to the error message of typed-holes. By lever-
aging the type checker, these �ts are selected from identi�ers in scope
such that if the hole is substituted with a valid hole �t, the resulting
expression is guaranteed to type check.





Found hole: _ :: [Int] -> Int
In the expression: _ :: [Int] -> Int
In an equation for ‘it’: it = _ :: [Int] -> Int
Relevant bindings include
it :: [Int] -> Int (bound at <interactive>:4:1)

Valid hole fits include
head :: forall a. [a] -> a
last :: forall a. [a] -> a
length :: forall (t :: * -> *) a. Foldable t => t a -> Int
maximum :: forall (t :: * -> *) a.

(Foldable t, Ord a) => t a -> a
minimum :: forall (t :: * -> *) a.

(Foldable t, Ord a) => t a -> a
product :: forall (t :: * -> *) a.

(Foldable t, Num a) => t a -> a
(Some hole fits suppressed; use
-fmax-valid-hole-fits=N or -fno-max-valid-hole-fits)

Valid refinement hole fits include
foldl1 (_ :: Int -> Int -> Int)

where foldl1 :: forall (t :: * -> *) a. Foldable t =>
(a -> a -> a) -> t a -> a

foldr1 (_ :: Int -> Int -> Int)
where foldr1 :: forall (t :: * -> *) a. Foldable t =>

(a -> a -> a) -> t a -> a
foldl (_ :: Int -> Int -> Int) (_ :: Int)
where foldl :: forall (t :: * -> *) b a. Foldable t =>

(b -> a -> b) -> b -> t a -> b
foldr (_ :: Int -> Int -> Int) (_ :: Int)
where foldr :: forall (t :: * -> *) a b. Foldable t =>

(a -> b -> b) -> b -> t a -> b
($) (_ :: [Int] -> Int)

where ($) :: forall a b. (a -> b) -> a -> b
const (_ :: Int)
where const :: forall a b. a -> b -> a

(Some refinement hole fits suppressed;
use -fmax-refinement-hole-fits=N
or -fno-max-refinement-hole-fits)

Figure 2.1: Typed-hole error message extended with hole �ts.

33



2. Suggesting Valid Hole Fits for Typed-Holes

2.1 Introduction

When writing documentation for libraries, the Haskell community often goes
the route of having descriptive function names and clear types that leverage
type synonyms in order to push much of the documentation to the type-level.
As developers program in Haskell, they often use a style of programming
called Type-Driven Development. They write out the input and output types
of functions before writing the functions themselves [3]. A consequence of
this approach is that the compiler has a lot of type information that is only
used during type checking. Can we make better use of the extra informa-
tion and type-level documentation and improve user experience? According
to the GitHub survey [5], user experience is the third most important factor
when choosing open source software, after stability and security, and thus
an important consideration.

We can leverage the richness of type information in library documenta-
tion along with users’ type signatures by extending typed-hole error mes-
sages with a list of valid hole �ts and re�nement hole �ts. These allow users
to �nd relevant functions and constants when a typed-hole is encountered:

Valid hole �ts and re�nement hole �ts can be used to e�ectively aid de-
velopment in many scenarios by allowing users to view and search type-level
documentation directly, thus improving the user experience.

Note: in the interest of reducing noise in the output in this report, I
have opted to show only the �ts themselves, and not the type application
nor provenance of the �t as displayed in the ouput by default. The amount
of detail in the output is controlled by �ags; the format used here is achieved
by setting the -funclutter-valid-hole-fits �ag. An example of the full
default output can be seen in �gure 2.2.

product :: forall (t :: * -> *) a.
(Foldable t, Num a) => t a -> a

with product @[] @Int
(imported from ‘Prelude’
(and originally defined in ‘Data.Foldable’))

Figure 2.2: The full output for a �t for _ :: [Int] -> Int.

2.1.1 Contributions

In this experience report, I do the following:

• Describe valid hole �ts and re�nement hole �ts as I have implemented
them in GHC. Valid hole �ts allow users to tap in to the extra type

34



2.1. Introduction

information available during compilation or interactively using GHCi,
while re�nement hole �ts extend valid hole �ts beyond identi�ers to
�nd functions that need additional arguments.

• Provide a detailed explanation of how I have implemented valid hole
�ts and re�nement hole �ts in GHC, and how I solved technical hurdles
along the way.

• Show the usefulness of hole �ts in case studies on an introductory ex-
ercise and when using the lens library.

• Finally, I present an application of valid hole �ts to libraries using
type-in-type to annotate functions with non-functional properties, and
show an example.

2.1.2 Background

Typed-Holes in GHC were introduced in version 7.8 and implemented by
Simon Peyton Jones, Sean Leather and Thijs Alkemade [7]. Inspired by a
similar feature in Agda, typed-holes allow a user of GHC to have “holes” in
their code, using an underscore (_) in place of an expression. When GHC
encounters a typed-hole, it generates an error with information about that
hole, such as its location, the (possibly inferred) type of the hole and rele-
vant local bindings [4]. Typed-holes can also be given names by appending
characters, e.g. _a and _b, to allow users to distinguish between holes.

Valid Hole Fits: We use the type information available in typed-holes to
make them more useful for programmers, by extending the typed-hole error
message with a list of valid hole �ts. Valid hole �ts are expressions which
the hole can be replaced with directly, and the resulting expression will type
check. An example of valid hole �ts can be seen in �gure 2.1.

Re�nement Hole Fits: It is often the case that a single identi�er is
not enough to implement the desired function, such as when writing the
product function (foldr (*) 1). To suggest useful hole �ts for these cases,
we introduce re�nement hole �ts. Re�nement hole �ts are valid hole �ts that
have one or more additional holes in them. The number of additional holes is
controlled by the re�nement level, set via -frefinement-level-hole-fits.
A re�nement level of 𝑁 means that hole �ts with up to 𝑁 additional holes
in them will be considered. An example of re�nement hole �ts can be seen
in �gure 2.1, in which the re�nement level is 2.

35



2. Suggesting Valid Hole Fits for Typed-Holes

2.2 Case Studies

To show that valid hole �ts and re�nement hole �ts can be used to e�ectively
aid development, we consider two cases, an introductory programming exer-
cise where we use the Prelude and an advanced case using the lens library.

2.2.1 Exercise from Programming in Haskell

To study how the valid hole �ts perform when used by beginners, I looked
at an example from Graham Hutton’s introductory text, Programming in
Haskell [9]. In exercise 4.8.1, students are asked to implement halve ::

[a] -> ([a],[a]), which should split a list of even length into two halves.
With re�nement hole �ts enabled, we can query GHCi by writing:

Prelude> _ :: [a] -> ([a], [a])

In response, GHCi will then generate a typed-hole error, including a list of
valid re�nement hole �ts:

Valid refinement hole fits include
break (_ :: a1 -> Bool)

where break :: forall a.
(a -> Bool) -> [a] -> ([a], [a])

span (_ :: a1 -> Bool)
where span :: forall a.

(a -> Bool) -> [a] -> ([a], [a])
splitAt (_ :: Int)
where splitAt :: forall a. Int -> [a] -> ([a], [a])

mapM (_ :: a1 -> ([a1], a1))
where mapM :: forall (t :: * -> *) (m :: * -> *) a b.

(Traversable t, Monad m) =>
(a -> m b) -> t a -> m (t b)

traverse (_ :: a1 -> ([a1], a1))
where traverse :: forall (t :: * -> *) (f :: * -> *) a b.

(Traversable t, Applicative f) =>
(a -> f b) -> t a -> f (t b)

const (_ :: ([a1], [a1]))
where const :: forall a b. a -> b -> a

(Some refinement hole fits suppressed;
use -fmax-refinement-hole-fits=N
or -fno-max-refinement-hole-fits)

One of the suggested �ts is the splitAt (_ :: Int) re�nement, and
given that the task is to split a list, this seems like a good �t. In this way, the
student can discover the splitAt function from the prelude, and a correct

36



2.2. Case Studies

solution (halve xs = splitAt (length xs `div` 2) xs) is easy to �nd
using re�nement hole �ts.

2.2.2 The Lens Library

In the lens library [10], the functions can be hard to �nd with Hoogle (see
section 2.5), due to the library’s extensive use of type synonyms. As an ex-
ample, consider the following:

import Control.Lens
import Control.Monad.State

newtype T = T { _v :: Int }

val :: Lens' T Int
val f (T i) = T <$> f i

updT :: T -> T
updT t = t &~ do

_ val (1 :: Int)

For the hole in the above, the typed-hole message includes:

Found hole:
_ :: ((Int -> f0 Int) -> T -> f0 T) -> Int -> State T a0

where f0 and a0 are ambiguous type variables. Searching for this type sig-
nature in Hoogle (version 5.0.17) yields no results from the lens library.

When valid hole �ts are available, GHC will output the following list of
valid hole �ts:

Valid hole fits include
(#=) :: forall s (m :: * -> *) a b. MonadState s m =>

ALens s s a b -> b -> m ()
(<#=) :: forall s (m :: * -> *) a b. MonadState s m =>

ALens s s a b -> b -> m b
(<*=) :: forall s (m :: * -> *) a. (MonadState s m,

Num a) => LensLike' ((,) a) s a -> a -> m a
(<+=) :: forall s (m :: * -> *) a. (MonadState s m,

Num a) => LensLike' ((,) a) s a -> a -> m a
(<-=) :: forall s (m :: * -> *) a. (MonadState s m,

Num a) => LensLike' ((,) a) s a -> a -> m a
(<<*=) :: forall s (m :: * -> *) a. (MonadState s m,

Num a) => LensLike' ((,) a) s a -> a -> m a
(Some refinement hole fits suppressed;
use -fmax-refinement-hole-fits=N
or -fno-max-refinement-hole-fits)

37



2. Suggesting Valid Hole Fits for Typed-Holes

Though the names of the functions are opaque, we see that integrating
the valid hole �ts into the typed-holes and integrating with the type checker
itself is a clear win, allowing us to �nd a mulitude of relevant functions from
lens.

2.3 Implementation

The valid hole �t suggestions for typed-holes are implemented as an exten-
sion to the error reporting mechanism of GHC, and are only generated dur-
ing error reporting of holes. This means that we can emphasize utility rather
than performance, as any overhead will only be incurred when the program
would in any case fail due to an error.

2.3.1 Inputs & Outputs

The entry into the valid hole �t search is the function called findValidHoleFits
in the TcHoleErrors module 1:

findValidHoleFits :: TidyEnv -- Type env for zonking
-> [Implication] -- Enclosing implics

-- containing givens
-> [Ct] -- Unsolved simple constraints

-- in the implic for the hole.
-> Ct -- The hole constraint itself
-> TcM (TidyEnv, SDoc)

This function takes the hole constraint that caused the error, the unsolved
simple constraints that were in the same set of wanted constraints as the
hole constraint, and the list of implications which that set was nested in.
The tidy type environment at that point of error reporting is also passed to
the function, and used later for zonking 2. To zonk, we use

zonkTidyTcType :: TidyEnv -> TcType -> TcM (TidyEnv, TcType)

from TcMType, which uses the tidy type environment to ensure that the re-
sulting types are consistent with the rest of the error message and other error
messages. The function returns the (possibly) updated tidy type environment
and the message containing the valid hole �ts.

1Available in GHC HEAD at:
http://git.haskell.org/ghc.git/blob/refs/heads/master:/compiler/typecheck/TcHoleErrors.hs

2In the context of GHC, zonking is when a type is traversed and mutable type variables
are replaced with the real types they dereference to.

38

http://git.haskell.org/ghc.git/blob/refs/heads/master:/compiler/typecheck/TcHoleErrors.hs


2.3. Implementation

2.3.2 Relevant Constraints

The unsolved simple constraints are constraints imposed by the call-site of
the hole. As an example, consider the holes _a and _b in the following:
f :: Show a => a -> String
f x = show (_b (show _a))

Here, the type of _a and the return type _b need to ful�ll a show constraint.
These constraints constitute the set of unsolved simple constraints {Show

𝑡𝑎, Show 𝑡𝑏}, where 𝑡𝑎 is the type of _a, and String -> 𝑡𝑏 is the type of
_b. Since valid hole �ts are only considered for one hole at a time, the un-
solved simple constraints are �ltered to only contain constraints relevant to
the current hole. For hole _a, this would be {Show 𝑡𝑎}, and for hole _b this
would be {Show 𝑡𝑏}. This is done by discarding those constraints whose
types do not share any free type variables with the type of the hole. I call
this �ltered set of constraints the relevant constraints.

2.3.3 Candidates

Candidate hole �ts are identi�ers gathered from the environment. We con-
sider only the elements in the global reader and the local bindings at the
location of the hole (discarding any shadowed bindings). The global reader
contains identi�ers that are imported or de�ned at the top-level of the mod-
ule. Using the local bindings allows us to include candidates bound by pat-
tern matching (such as function arguments) or in let or where clauses. As
an example, in:
f (x:xs) = let a = () in _

where k = head xs

the global reader elements considered as candidates are the functions in the
Prelude and f, while the local binding candidates are f, x, xs, a and k. When
shadowed bindings are removed, the f from the global reader is discarded.
For global elements, a lookup is performed in the type checker to �nd their
associated identi�ers, discarding any elements not associated with an iden-
ti�er or data constructor (like type constructors or type variables). Candi-
dates from GHC.Err (like undefined) are discarded, since they can be made
to match any type at all, and are unlikely to be the function that the user is
looking for.

2.3.4 Checking for Fit

Each of these candidates is checked in turn by invoking the tcCheckHoleFit
function. This function starts by capturing the set of constraints and wrapper

39



2. Suggesting Valid Hole Fits for Typed-Holes

emitted by the tcSubType_NC function when invoked on the type of the
candidate and the type of the hole. The tcSubType_NC function takes in two
types and returns the core wrapper needed to go from one type to the other,
emitting the constraints which must be satis�ed for the types to match. The
relevant constraints are added to this set of constraints, to ensure that any
constraints imposed by the call-site of the hole are satis�ed as well. This
extended set is wrapped in the implications that the hole was nested in, so
that any givens contained in the implications (such as that a satis�es the
show constraint in the example above) are passed along. These are passed to
the simpli�er, which checks the constraints. If the set is soluble, the candidate
is a valid hole �t, and the wrapper is returned. The wrapper is used later to
show how the type of the �t matches the type of the hole by showing the
type application, like product @[] @Int in �gure 2.2.

2.3.5 Refinement hole fits

For re�nement hole �ts,𝑁 fresh �exible type variables are created, 𝑎1, . . . , 𝑎𝑁 ,
where𝑁 is the re�nement level set by the -frefinement-level-hole-fits
�ag. We then look for �ts not for the type of the hole, 𝑡ℎ, but for the type
𝑎1 → ·· · → 𝑎𝑁 → 𝑡ℎ. These additional type variables allow us to emulate
additional holes in the expression. To limit the number of re�nement hole
�ts, additional steps are taken after we have checked whether the type �ts, to
check whether all the fresh type variables ended up being uni�ed with a con-
crete type. This ensures that �ts involving fresh variables such as id (_ ::

a1 -> a2 -> a) (_ :: a1) (_ :: a2) are discarded unless explicitly re-
quested by the user by passing the -fabstract-refinement-hole-fits

�ag. If a match is found, the fresh type variables are zonked and the type
they were uni�ed with read o� them, allowing us to show the types of the
additional holes (like Int -> Int -> Int for the hole in the foldl1 (_ ::

Int -> Int -> Int) �t).

2.3.6 Sorting the Output

As with relevant bindings, only 6 valid hole �ts are displayed by default. To
increase the utility of the valid hole �ts, we sort the �ts by relevance, which
is approximated in two ways.

Sorting by Size: The default approximation sorts by the size of unique
types in the type application needed to go from the type of the �t to the type
of the hole, as de�ned by the core expression wrapper returned when the �t
was found. The size is computed by applying the sizeTypes function, which
counts the number of variables and constructors:

40



2.3. Implementation

Table 2.1: Sizes of matches for _ :: String -> [String]

Fit Type Application Size
lines String -> [String] 0
repeat a -> [a] String 2
mempty Monoid a => a String -> [String] 6

Only unique types are considered, since �ts that require many di�er-
ent types are in some sense “farther away” than �ts that require only a few
unique types. This method is faster and returns a reasonable ordering in most
cases.

Sorting by Subsumption: The other approximation is enabled by the
-fsort-by-subsumption-hole-fits �ag. When sorting by subsumption,
a subsumption graph is constructed by checking all the �ts that have been
found for whether they can be used in place of any other found �t. A directed
graph is made, in which the nodes are �ts and the edges are the result of the
subsumption check, where �t 𝑎 has an edge to �t 𝑏 �t if 𝑏 could be used
anywhere that 𝑎 could be used. An example of such a graph can be seen
in �gure 2.3. The �ts are sorted by a topological sort on this graph, so that
if 𝑏 could be used anywhere 𝑎 could be used, then 𝑏 appears after 𝑎 in the
output. This ordering ensures that more speci�c �ts (such as those with the
same type as the hole) appear earlier than more abstract, general �ts.

lines
words

read

repeat
return pure

mempty
fail

Figure 2.3: The subsumption graph for matches for _ :: String -> [String].
Here lines would come before repeat, read, and fail, repeat
before mempty and return, etc.

2.3.7 Dealing with Side-e�ects

When GHC simpli�es constraints, it does so by side-e�ect on the type vari-
ables involved and the evidence contained within implications. To ensure
that checks for �ts do not a�ect later checks, we must encapsulate these
side-e�ects.

Using Quanti�cation: My �rst (naive) approach to avoid side-e�ects
was to wrap the type with any givens from the implications and quantify-
ing any free type variables, which meant that any e�ects on the variables
only a�ected fresh variables introduced by the type checker during simpli-

41



2. Suggesting Valid Hole Fits for Typed-Holes

�cation. However, this approach rejected some valid hole �ts and accepted
some invalid hole �ts since the type forall a. a is not equivalent to a in
most cases.

Using a Wrapper: The current approach to avoid side-e�ects uses a
wrapper that restores �exible meta type variables back to being �exible after
the operation has been run, reverting any side-e�ects on those variables.

2.4 An Additional Application

The reason I started looking into valid hole �ts for typed-holes was to be
able to interact with libraries of functions annotated with non-functional
properties.

A Library of Sorting Algorithms annotated with computational com-
plexity and memory complexity is one example. We can de�ne a type to
represent simple asymptotic polynomials for a simplistic encoding of big 𝑂
notation:

{-# LANGUAGE TypeInType, TypeOperators, TypeFamilies,
UndecidableInstances, ConstraintKinds #-}

module ONotation where

import GHC.TypeLits as L
import Data.Type.Bool
import Data.Type.Equality

-- Simplistic asymptotic polynomials
data AsymP = NLogN Nat Nat

-- Synonyms for common terms
type N = NLogN 1 0
type LogN = NLogN 0 1
type One = NLogN 0 0

-- Just to be able to write it nicely
type O (a :: AsymP) = a

type family (^.) (n :: AsymP) (m :: Nat) :: AsymP where
(NLogN a b) ^. n = NLogN (a L.* n) (b L.* n)

type family (*.) (n :: AsymP) (m :: AsymP) :: AsymP where
(NLogN a b) *. (NLogN c d) = NLogN (a+c) (b+d)

type family OCmp (n :: AsymP) (m :: AsymP) :: Ordering where
OCmp (NLogN a b) (NLogN c d) =

42



2.4. An Additional Application

If (CmpNat a c == EQ) (CmpNat b d) (CmpNat a c)

type family OGEq (n :: AsymP) (m :: AsymP) :: Bool where
OGEq n m = Not (OCmp n m == 'LT)

type (>=.) n m = OGEq n m ~ True

We can now annotate a library of sorting functions to use 𝑂 notation to
convey complexity information:

{-# LANGUAGE TypeInType, TypeOperators, TypeFamilies,
TypeApplications #-}

module Sorting ( mergeSort, quickSort, insertionSort
, Sorted, runSort, module ONotation) where

import ONotation
import Data.List (insert, sort, partition, foldl')

-- Sorted encodes average computational and auxiliary
-- memory complexity. The complexities presented
-- here are the in-place complexities, and do not match
-- the naive but concise implementations included here.
newtype Sorted (cpu :: AsymP) (mem :: AsymP) a

= Sorted {runSort :: [a]}

insertionSort :: (n >=. O(N^.2), m >=. O(One), Ord a)
=> [a] -> Sorted n m a

insertionSort = Sorted . foldl' (flip insert) []

mergeSort :: (n >=. O(N*.LogN), m >=. O(N), Ord a)
=> [a] -> Sorted n m a

mergeSort = Sorted . sort

quickSort :: (n >=. O(N*.LogN) , m >=. O(LogN), Ord a)
=> [a] -> Sorted n m a

quickSort (x:xs) = Sorted $ (recr lt) ++ (x:(recr gt))
where (lt, gt) = partition (< x) xs

recr = runSort . quickSort @(O(N*.LogN)) @(O(LogN))
quickSort [] = Sorted []

Using valid hole �ts, we can then search the sorting library by specifying
the desired complexity in the type of a hole to �nd functions with those
properties (or better):

43



2. Suggesting Valid Hole Fits for Typed-Holes

Valid hole fits include
mergeSort :: forall (n :: AsymP) (m :: AsymP) a.

(n >=. O (N *. LogN), m >=. O N, Ord a)
=> [a] -> Sorted n m a

quickSort :: forall (n :: AsymP) (m :: AsymP) a.
(n >=. O (N *. LogN), m >=. O LogN, Ord a)
=> [a] -> Sorted n m a

Figure 2.4: Valid hole �ts found in GHCi version 8.6 for the hole in
_ [3,1,2] :: Sorted (O(N*.LogN)) (O(N)) Integer

2.5 Related Work & Ideas

Hoogle is the type directed search engine for Haskell, and allows users to
easily search all of Hackage for functions by type or name [12]. Hoogle,
however, does not integrate with the type checker of GHC, and can have dif-
�culties with handling complex types and type families. Hoogle uses data ex-
tracted from the Haddock generated documentation of packages [12], mean-
ing that unexported functions in the current, local module and local bindings
like function arguments and bindings de�ned in let or where clauses are not
discoverable. For searching the Haskell ecosystem however, Hoogle remains
unparalleled.

Program Synthesis: Finding valid hole �ts can be considered a special
case of type-directed program synthesis. Djinn is a program synthesis tool
that generates Haskell code from a type, and can generate total functions
rather than just single identi�ers fom user provided types and functions [2].
Synquid is a command line tool and algorithm that can synthesize programs
from polymorphic re�nement types in an ML-like language [14]. Other pro-
gram synthesis tools include InSynth and Prospector [6, 11], however none
of these are integrated with a compiler or type checker of a language, but are
rather stand-alone tools or IDE plugins.

PureScript: The valid hole �ts as presented in this report are modeled on
the type directed search that Hegemann implemented in PureScript as part of
his Bachelor’s thesis work [8]. In PureScript, the type directed search looks
for matches when a typed-hole is encountered [8]. The valid hole �ts as I
have implemented them in GHC go further than those in PureScript in that
the output is sorted, and additional arguments are available via re�nement
hole �ts.

Agda: The typed-holes of GHC were originally inspired by Agda [7].
Agda is dependently typed, and thus can o�er very speci�c matches. The
emacs mode of Agda o�ers the Auto command to automatically �ll a hole

44



2.6. Conclusion

with a term of the correct type, and the Refine command can split a hole into
cases containing additional holes [1]. The dependent typing has the draw-
back that type inference is in general undecidable, and users must explicitly
provide more types than required in Haskell [13].

Idris, like Agda, is dependently typed, and o�ers a proofsearch command
that can construct terms of a given type [3]. Idris also has a type directed
search command, but in Idris the command also gives (and denotes) matches
with a more speci�c type, in addition to matches of the same or more gen-
eral type [3]. This allows users to �nd functions that match Eq a => [a]

-> a when searching for [a] -> a, even though it requires an additional
constraint [3]. Idris does not integrate these commands with typed-holes.

2.6 Conclusion

As can be seen from the examples in this report, valid hole �ts can be useful in
many di�erent scenarios. They can improve the user experience for Haskell
programmers working with prelude functions like foldl or advanced fea-
tures like lens or TypeInType. The implementation makes use of the al-
ready present type checking mechanisms of GHC, and integrates well with
typed-holes in a non-intrusive manner. I believe it to be good addition to the
typed-holes of GHC; it should help facilitate Type-Driven Development in
Haskell.

I learned a great deal from this project. Extending GHC was certainly
non-trivial, however, the modularity of GHC allowed me to reuse a lot of
code and to focus on the what rather than the how. A few pitfalls were en-
countered (like type checking by side-e�ect), and while the documentation
of GHC internals is not so great (being mostly spread around in comments
and assuming a lot of knowledge from the reader), the community was very
helpful to a newcomer.

2.6.1 Future Work

When working with typed-holes, a few issues come to light: Too General

Fits: The types inferred by GHC are sometimes too polymorphic for the valid
hole �ts to be useful. One such example is if we consider the function f x =

(_+x)/5. Here, GHC will happily infer the most general type, namely that
f :: Fractional a => a -> a. A sensible hole �t for the hole in f is pi
:: Floating a => a, but that would constrain f to the more speci�c type
of Floating a => a -> a. If f is not explicitly typed, then pi should be
a valid hole �t. However, f having a more speci�c type might invalidate

45



2. Suggesting Valid Hole Fits for Typed-Holes

other code that uses f, if those uses are explicitly typed with a Fractional

constraint and not a Floating constraint. We would like to suggest such
hole �ts, for example by including a list of more speci�c hole �ts, such as
o�ered by Idris [3].

Built-in Syntax: Functions that are built-in syntax are not considered
as candidate hole �ts, since they are not in the global reader. However, func-
tions like (,), [_], and (:) :: a -> [a] -> [a] are very common, and
suggesting them would improve the user experience. Since these functions
are syntax, they are not “in scope” in the global reader and no list of these
functions is de�ned in GHC, making the addition of built-in syntax candi-
dates non-trivial. One solution would be to hard-code these as candidates.

Functions with Fewer Arguments: There is no way to �nd functions
that take in fewer arguments than required, and users must resort to bind-
ing the arguments (with e.g. (\x -> _)) in order to �nd these suggestions.
Considering lambda abstractions as candidates could improve this case.

Specifying Behavior: It can be hard to choose which �t to use when
multiple �ts with the right type but di�erent behaviors are suggested. Being
able to hint to GHC how the function should behave would allow us to dis-
card wrong hole �ts. One approach would be integrating the valid hole �ts
with something like the re�nement types of Liquid Haskell:

{-@ isPositive :: x:Int -> {v:Bool | v <=> x > 0} @-}

in which users can specify invariants for behavior [15].

2.6.2 Current Status

My contributions to GHC have been accepted. A basic version of the valid
hole �ts is in GHC version 8.4, an improved version with sorting, re�ne-
ment hole �ts and local binding suggestions in GHC version 8.6, and on GHC
HEAD, a version is available with a �ag to display documentation for hole
�ts in the output (to explain opaque function names). All code is available in
the TcHoleErrors module in GHC.

46



Bibliography

[1] Agda Contributors. Agda Documentation 2.5.3, 2017.

[2] L. Augustsson. The Djinn package, 2014.

[3] E. Brady. Type-Driven Development with Idris. Manning Publications
Company, 2017.

[4] GHC Contributors. GHC 8.2.1 users guide, 2017.

[5] GitHub. The Open Source Survey, 2017.

[6] T. Gvero, V. Kuncak, I. Kuraj, and R. Piskac. Complete completion using
types and weights. In PLDI ’13, Proc. the 34th ACM SIGPLAN Confer-
ence on Programming Language Design and Implementation, pages 27–
38. ACM, 2013.

[7] Haskell Wiki Contributors. Typed holes in GHC, 2014.

[8] C. Hegemann. Implementing type directed search for PureScript. BSc.
Thesis, University of Applied Sciences, Cologne, 2016.

[9] G. Hutton. Programming in Haskell. Cambridge University Press, 2016.

[10] E. Kmett. The lens library, 2018.

[11] D. Mandelin, L. Xu, R. Bodík, and D. Kimelman. Jungloid mining: help-
ing to navigate the api jungle. In PLDI ’05, Proc. the 26th ACM SIG-
PLAN Conference on Programming Language Design and Implementa-
tion, pages 48–61. ACM, 2005.

[12] N. Mitchell. Hoogle overview. The Monad. Reader, 12:27–35, 2008.

[13] U. Norell. Dependently typed programming in Agda. In International
School on Advanced Functional Programming, pages 230–266. Springer,
2008.

47



Bibliography

[14] N. Polikarpova, I. Kuraj, and A. Solar-Lezama. Program synthesis from
polymorphic re�nement types. In PLDI ’16, Proc. the 37th ACM SIG-
PLAN Conference on Programming Language Design and Implementa-
tion, pages 522–538. ACM, 2016.

[15] N. Vazou, E. L. Seidel, R. Jhala, D. Vytiniotis, and S. Peyton-Jones. Re-
�nement types for Haskell. In ICFP ’14, Proc. the 19th ACM SIGPLAN
International Conference on Functional Programming, pages 269–282.
ACM, 2014.

48



3
PropR: Property-Based

Automatic Program Repair

Ma�hías Páll Gissurarson, Leonhard Applis,

Annibale Panichella, Arie van Deursen, and

David Sands

International Conference on Software Engineering 2022 (ICSE ’22)

A
bstract. Automatic program repair (APR) regularly faces the chal-

lenge of over�tting patches — patches that pass the test suite, but
do not actually address the problems when evaluated manually. Cur-
rently, over�t detection requires manual inspection or an oracle making
quality control of APR an expensive task. With this work, we want to
introduce properties in addition to unit tests for APR to address the
problem of over�tting. To that end, we design and implement PropR, a
program repair tool for Haskell that leverages both property-based test-
ing (via QuickCheck) and the rich type system and synthesis o�ered by
the Haskell compiler. We compare the repair-ratio, time-to-�rst-patch
and over�tting-ratio when using unit tests, property-based tests, and
their combination. Our results show that properties lead to quicker re-
sults and have a lower over�t ratio than unit tests. The created over�t
patches provide valuable insight into the underlying problems of the
program to repair (e.g., in terms of fault localization or test quality). We
consider this step towards �tter, or at least insightful, patches a critical
contribution to bring APR into developer work�ows.





3.1 Introduction

Have you ever failed to be perfect? Don’t worry, so have automatic pro-
gram repair (APR) approaches. APR faces many challenges, some inher-
ited from search-based software engineering (SBSE), like over�tting [52, 67],
predictive-evaluation in search [73], and duplicate handling [9]. Other chal-
lenges are unique to the domain itself, such as deriving ingredients for a
�x [41] and producing valid programs [28]. Consequently, APR has open
research in all of its core aspects: search-space, search-process, and �tness-
evaluation. The research community is shifting its focus towards other so-
lutions, either leaving behind boundaries of search space using generative
neural networks [36, 42, 65], or by empirical evidence that �xes are often re-
lated to dependencies, not the code itself [4, 14]. Fixes are usually validated
by running against the test suite of the program, assuming that a solution
that passes all tests is a valid patch. However, Le Goues et al. [54] showed
that Program Repair can over�t, i.e., that a �x passes the test suite despite
removing functionality or just bypassing single tests.

Usually, generated patches are evaluated against a unit test suite of the
buggy program [34]. The �tness is de�ned as the number of failing tests
in the suite [40], making a �tness of zero a potential �x. The problem is
the quality of the tests — often not all important cases are covered, and the
search �nds something that passes all tests but doesn’t provide all wanted
functionality [52]. This is considered an over�t repair attempt. A particu-
larly good example for this is the Kali approach [54], that removes random
statements of a program. In a later study, Martinez et al. [38] showed that
out of 20 of the repair attempts that passed the tests, only one was a real �x.
One approach by Yz et al. [71] to address over�tting was to introduce tests
generated with EvoSuite [15] to have a stronger test suite, reporting only an
improvement in speed, not in found solutions. Unfortunately, EvoSuite in-
troduces a new problem: If the program was faulty (which programs that we
are trying to repair are), an automatically generated test suite may assert the
faulty behavior and make test-based repairs unable to ever produce a correct

51



3. PropR: Property–Based Automatic Program Repair

program, despite passing the (generated) test suite. Thus, current automated
test-case generation is not the be-all and end-all for over�tting in APR.

This work aims to improve APR with addressing the over�tting problem
by introducing properties [8] in addition to unit tests. A software property is
an attribute of a function (e.g., symmetry, idempotency, etc.) that is evaluated
against randomly created instances of input data. Well-written properties
often cover hundreds of (unit) tests, making them attractive candidates for
�tness evaluation.

We argue that properties can be an improvement to the over�tting chal-
lenge in APR. While property-based testing frameworks exist for a range
of languages, the practice is particularly natural for functional program-
ming, and widely used in the Haskell community. Therefore, we implement a
tool called PropR, which utilizes properties for Haskell-Program-Repair and
evaluate the repair rates and over�tting rates for di�erent algorithms (ran-
dom search, exhaustive search, and genetic algorithms). Our �xes follow a
GenProg-like approach [34] of representing patches as a set of changes to
the program, with the major di�erence that our patch ingredients (muta-
tions) are sourced by the Haskell compiler using a mechanism called typed
holes [19]. A typed hole can be seen as a placeholder, for which the compiler
suggests elements that produce a compiling program. As these suggestions
cover all elements in scope (not only those used in the existing code), we
overcome to some degree the redundancy assumption [41], i.e., the concept
that patches are sourced from existing code or patterns, which is common to
GenProg-like approaches.

Our results show that properties help to reduce the over�t ratio from 85%
to 63% and lead to faster search results. Properties can still lead to over�tting,
and the union test suite of properties and unit tests inherits both strengths
and weaknesses. We therefore argue to use properties if possible, and suggest
to aim for the strongest test suite regardless of the test-type. The patches
from PropR can produce complex repair patterns that did not appear within
the code. Even patches that are over�t can give valuable insight in the test
suite or the original fault.

Our contributions can be summarized as follows:

1. Introducing the use of properties for �tness functions in automatic pro-
gram repair.

2. Showing how to generate patch candidates using compiler scope, par-
tially addressing the redundancy assumption.

3. Performing an empirical study to evaluate the improvement gained
by properties with a special focus on manual inspection of generated

52



3.2. Background and Related Work

patches to detect eventual over�tting.

4. An open source implementation of our tool PropR, enabling future re-
search on program repair in a strongly typed functional programming
context.

5. Providing the empirical study data for future research.

The remainder of the paper is organized as follows: Section 3.2 intro-
duces property-based testing and summarizes the related work in the �elds
of genetic program repair as well as background on typed holes, which are a
key element of our patch generation method. In Section 3.3 we present the
primary aspects of the repair tool and their reasoning. Section 3.4 presents
the data used in the empirical study, and declares research questions and
methodology. The results of the research questions are covered in Section 3.5
and discussed in Section 3.6. After the threats to validity in Section 3.7 we
summarize the work in Section 3.8. The shared artifacts are described in
Section 3.9.

3.2 Background and Related Work

3.2.1 Property-Based Testing

Property-based testing is a form of automated testing derived from random
testing [22]. While random testing executes functions and APIs on random
input to detect error states and reach high code coverage, property-based
testing uses a developer de�ned attributes called properties of functions that
must hold for any input of that function [8]. Random tests are performed
for the given property; If an input is found for which the property returns
false or fails with an error, the property is reported as failing along with the
input as a counter example [8]. Some frameworks will additionally shrink
the counter example using a previously supplied shrinking function to o�er
better insight into the root cause of the failure [8].

There are some variations on property-based testing, e.g. SmallCheck,
which performs an exhaustive test of the property [58]. QuickCheck approx-
imates this behavior with a con�gurable number of random inputs (by de-
fault 100 random samples). Figure 3.1 provides an example comparison of
properties and unit tests of a sine function. The properties require an argu-
ment Double -> Test and must hold for any given Double. On any single
QuickCheck run, 202 tests are performed, forming a much stronger test suite
for a comparable amount of code.

53



3. PropR: Property–Based Automatic Program Repair

prop_1 :: Double -> Test
prop_1 x =
sin x ~== sin (x + 2*𝜋)

prop_2 :: Double -> Test
prop_2 x =
sin (-1*x) ~== -1*(sin x)

prop_3 :: Test
prop_3 = sin (𝜋/2) == 1

prop_4 :: Test
prop_4 = sin 0 == 0

unit_1 :: Test
unit_1 =
sin 𝜋 ~== sin (3*𝜋)

unit_2 :: Test
unit_2 = sin 0 == 0

unit_3 :: Test
unit_3 = sin (𝜋/2) == 1

unit_4 :: Test
unit_4 =
sin (-1*𝜋/2) == -1*(sin 𝜋/2)

(~==) :: Double -> Double -> Bool
n ~== m = abs (n - m) <= 1.0e-6

Figure 3.1: Comparison of Properties and Unit Tests for sin

A remaining question is whether one cannot just reproduce these 202
tests by unit tests. For a single seed, this is doable — but it is a special strength
of properties that the new tests are randomly generated on demand. We hope
this addresses the problem of over�tting [52], as there are no �xed tests to �t
on as long as the seed changes. Furthermore, we stress that maintaining 2
properties is easier than maintaining 200 (repetitive) unit tests.

3.2.2 Haskell, GHC & Typed Holes

Haskell Haskell is a statically typed, non-strict, purely functional pro-
gramming language. Its design ensures that the presence of side e�ects is
always visible in the type of a function, and it is typical programming prac-
tice to cleanly separate code requiring side e�ects from the main applica-
tion logic. This facilitates a modular approach to testing in which program
parts can be tested in isolation without needing to consider global state or
side e�ects. Haskell’s rich type system and type classes allow tools such as
QuickCheck [8] to e�ciently test functions using properties, where the in-
puts are generated by QuickCheck based on a generator for a given datatype.

Valid Hole-Fits Our tool is based on using the Glasgow Haskell Compiler
(GHC), which is widely used in both industry and academia. GHC has many
features beyond the Haskell standard, including a feature known as typed
holes [19]. A “hole”, denoted by an underscore character (_), allows a pro-
grammer to write an incomplete program, where the hole is a placeholder
for currently missing code.

54



3.2. Background and Related Work

Using a hole in an expression generates a type error containing contex-
tual information about the placeholder, including, most importantly, its in-
ferred type. In addition to contextual information, GHC suggests some valid
hole-�ts [19]. Valid hole �ts are a list of identi�ers in scope which could be
used to �ll the holes without any type errors. As a simple example, consider
the interaction with the GHC REPL shown in Figure 3.2.

GHCi> let degreesToRadians :: Double -> Double
degreesToRadians d = d * _ / 180

<interactive>:4:30: error:
• Found hole: _ :: Double
In the expression: d * _ / 180

Valid hole fits include
d :: Double (bound at <interactive>:4:22)
pi :: forall a. Floating a => a (imported from ‘Prelude’)

Figure 3.2: Example code with a hole and its valid hole-�ts

Here the de�nition of degreesToRadians contains a hole. There are just
two valid hole-�ts in scope: the parameter d and the prede�ned constant pi.
GHC can not only generate simple candidates such as variables and func-
tions, but also re�nement hole-�ts. A re�nement hole-�t is a function iden-
ti�er with placeholders for its parameters. In this way GHC can be used to
synthesize more complex type-correct candidate expressions through a se-
ries of re�nement steps up to a given user-speci�ed re�nement depth. For
example, setting the re�nement depth to 1 will additionally provide, among
others, the following hole-�ts:

negate ( _ :: Double)
fromInteger ( _ :: Integer)

In this work we use hole �tting for program repair by removing a po-
tentially faulty sub-expression, leaving a hole in its place, and using valid
hole-�ts to suggest possible patches.

Hole-Fit Plugins By default, GHC considers every identi�er in scope as a
potential hole-�t candidate, and returns those that have a type corresponding
to the hole as hole-�ts. However, users might want to add or remove can-
didates or run additional search using a di�erent method or external tools.
For this purpose, GHC added hole-�t plugins [17], which allows users to cus-
tomize the behavior of the hole-�t search. When using GHC as a library, this
also allows users to extract an internal representation of the hole-�ts directly
from a plugin, without having to parse the error message.

55



3. PropR: Property–Based Automatic Program Repair

3.2.3 GenProg, Genetic Program Repair and Patch Representa-

tion

Search-based program repair centered mostly around the work of Le Goues et
al. [34] in GenProg, which provided genetic search for C-program repair. One
of the primary contributions was the representation of a patch as a change
(addition, removal, or replacement) of existing statements. Genetic search is
based around the mutation, creation and combination of chromosomes — the
basic building bricks of genetic search. A chromosome of APR is a list of such
changes rather than a full program (AST), making the approach lightweight.
Utilizing changes is based on the Redundancy Assumption [32], i.e., assum-
ing that the required statements for the �x already exists. The code might
just use the wrong variable or miss a null-check to function properly. This
assumption has been veri�ed by Martinez et al. [41], showing that the redun-
dancy assumption widely holds for inspected repositories. We adopted the
patch-representation in our tool, but were able to weaken the redundancy
assumption (see Section 3.3).

Since GenProg, much has been done in genetic program repair [11] mostly
for Java. Particularly Astor [39] enabled lots of research [61, 66, 69, 70] due
to its modular approach, as well as real-world applications [59, 62]. This
modularity, mostly the separation of fault localization, patch-generation and
search is a valuable lesson learned by the community that we adopted in
our tool. Compared to this body of research, our scienti�c contributions lie
within the patch-generation and the search-space (see Section 3.3.1).

3.2.4 Repair of Formally Verified Programs and Program Syn-

thesis

Another �eld of research dominant in functional programming is formal ver-
i�cation, in which mathematical methods are used to prove the correctness
of programs. Due to its strengths it has been widely applied to various tasks,
such as hardware-veri�cation [26], cryptographic protocols [43] or lately
smart contracts [6]. But formal veri�cation has also been applied to the
domain of program repair and synthesis [30, 60], and some languages can
arguably be considered synthesizers around constraints (e.g. Prolog). Using
speci�cation-based synthesis in combination with a SAT solver can be e�ec-
tive, however the accuracy is closely tied to the completeness of the post-
condition constraints [20]. For Haskell, these approaches revolve around liq-
uid types, which enrich Haskell’s type system with logical predicates that are
passed on to an SMT solver during type checking [48, 56, 57, 64]. The exist-
ing approaches [21, 25, 50] focus primarily on the search-aspects of program

56



3.3. Technical Details — PropR

synthesis due to the (in�nite) search space and often perform a guided search
similar to proof-systems. The approach used in the Lifty [51] language is es-
pecially relevant: Lifty is a domain-speci�c data-centric language in which
applications can be statically and automatically veri�ed to handle data speci-
�ed as per declarative security policies, and suggest provably correct repairs
when a leak of sensitive data is detected. Their approach di�ers in that they
target a domain-speci�c language and focus on type-driven repair of secu-
rity policies and not general properties. Another interesting approach is the
TYGAR based Hoogle+ API discovery tool, where users can specify program-
ming tasks using either a type, a set of input-output tests, or both, and get
a list of programs composed from functions in popular Haskell libraries and
examples of behavior [24]. It is however focused on API discovery and not
program repair, although incorporating Hoogle+ into PropR is an interesting
avenue for future work. The approach by Lee et al. [35] is in many ways sim-
ilar; They also operate on student data and �nd very valuable insights from
repair and identical challenges. The approach they developed (FixML) ex-
ploits typed holes to align buggy student programs with a given instructor-
program based on symbolic execution. FixML is di�erent as it requires a
gold standard, and synthesizes by type-enumeration after symbolic execu-
tion. To some degree, this is similar to our implementation of an exhaustive
search. Semantics-based repair using symbolic-execution like that of Angelix
[44] can be very e�ective in �xing real-world bugs, and uses symbolic ex-
pressions similarly to our typed-holes. However, there are some scalability
concerns for symbolic execution, and while they can be mitigated using a
carefully chosen number of suspicious expression and their derived angelic
forests [44], they can also be mitigated using genetic algorithms and the more
lightweight property-based analysis, motivating their usage in PropR. Com-
pared to program synthesis, program repair is better able to take advantage
of a "reasonable" baseline program from the developers.

In terms of utilizing speci�cations, the primary bene�t of QuickCheck
is the easy adoption for users, whereas formal veri�cation comes with a
high barrier of entry for most programs and requires dedicated and educated
developers. To some degree we utilize formal veri�cation due to the type-
correctness-constraint that already greatly shrinks the search space — while
we assert the functional correctness with tests and properties. A full formal
veri�cation-suite might produce better results, but we ease the adoption of
our approach by utilizing comprehensive properties and tests.

57



3. PropR: Property–Based Automatic Program Repair

Failing Properties

Targets

Haskell Program Coverage

GHC + Plugin

Fault-involved Expressions

Candidate Fixes

Source

QuickCheck

Search Algorithm

Fixes

Properties

Di�

Apply Fixes

Hole-Fit Synthesis

Perforated Expressions

Perforation

Candidate Selection

Candidate Evaluation

Inspect Bindings

Fault localization

Test Properties

Rebind In Properties

1

2

3

4

5

6

7
8

9

10

11

Figure 3.3: The PropR test-localize-synthesize-rebind loop

3.3 Technical Details — PropR

To investigate the e�ectiveness of combining property-based tests with type-
based synthesis, we implemented PropR. PropR is an automated program
repair tool written in Haskell, and uses GHC as a library in conjunction with
custom-written hole-�t plugins as the basis for parsing source code, synthe-
sizing �xes, as for instrumenting and running tests. PropR also parametrizes
the tests so that local de�nitions can be exchanged with new ones, which al-
lows us to observe the e�ectiveness of a �x. To automate the repair process,
PropR implements the search methods described in Section 3.3.4 to �nd and
combine �xes for the whole program repair. An overview of the PropR test-
localize-synthesize-rebind (TLSR) loop is provided in Figure 3.3. The circled
numbers n in this section refer to the labels in Figure 3.3.

As a running example, imagine we had an incorrect implementation of a
function to compute the length of a list called len, with properties, as seen
in Figure 3.4.

58



3.3. Technical Details — PropR

len :: [a] -> Int

len [] = 0

len xs = product $ map (const (1 :: Int)) xs

prop_abc :: Bool

prop_abc = len "abc" == 3

prop_dup :: [a] -> Bool

prop_dup x = len (x ++ x) == 2 * len x

Figure 3.4: An incorrect implementation of length. We map over the list and
set all elements to 1 :: Int, and take the product of the re-
sulting list. This means that len will always return 1 for all lists.
An expected �x would be to take the sum of the elements, which
would give the length of the list.

prop'_abc :: ([a] -> Int) -> Bool

prop'_abc f = f "abc" == 3

prop'_dup :: ([a] -> Int) -> [a] -> Bool

prop'_dup f x = f (x ++ x) == 2 * f x

Figure 3.5: The parametrized properties for len

3.3.1 Compiler-Driven Mutation

To repair a program, we use GHC to parse and type check the source into
GHC’s internal representation of the type-annotated Haskell AST. By using
GHC as a library, we can interact with GHC’s rich internal representation of
programs without resorting to external dependencies or modeling. We deter-
mine the tests to �x by traversing the AST for top-level bindings with either
a type (TestTree) or name (prop) that indicates it is a test 1 . We use GHC’s
ability to derive data de�nitions for algebraic data types [17] and the Lens
library [27] to generate e�cient traversals of the Haskell AST. To determine
the function bindings to mutate, we traverse the ASTs of the properties and
�nd variables that refer to top-level bindings in the current module 2 . We
call these bindings the targets.

In our example, both prop_abc and prop_dup use the local top-level
binding len in their body, so our target set will be {len}.

59



3. PropR: Property–Based Automatic Program Repair

abc_prop :: Bool

abc_prop = prop'_abc length

dup_prop :: [a] -> Bool

dup_prop = prop'_dup length

Figure 3.6: The parametrized properties applied to a di�erent implementa-
tion of len, the standard library length

Parametrized properties To generalize over the de�nition of targets in
the properties and tests, we create a parametrized property from each of the
properties by changing their binding to take an additional argument for each
of the targets in their body. This allows us to rebind (i.e., change the de�nition
of) each of the targets by providing them as an argument to the parametrized
property 3 . Once the parametrized property has received all the target ar-
guments, it now behaves like the original property, with the target bindings
referring to our mutated de�nitions. We show the parametrized properties
for the properties in Figure 3.4 in Figure 3.5.

The new properties in Figure 3.6, abc_prop and double_prop will now
behave the same as the original prop_abc and prop_dup, but with every
instance of len replaced with length:

abc_prop = length "abc" == 3

double_prop x = length (x ++ x) == 2 * length x

This allows to create new de�nitions of len and evaluate how the properties
behave with the di�erent de�nitions.

Fault localization PropR uses an expression-level fault localization spec-
trum [1], to which we apply a binary fault localization method (touched or
not touched by failing properties). A notable di�erence to other APR tools
like Astor is that we can perform fault localization for the mutated targets.
This enables PropR to adjust the search space once a partial repair has been
found, i.e. one that passes a new subset of the properties. Since fault lo-
calization is expensive, by default we only perform it on the initial program
similarly to Astor [39, 40]. GHC’s Haskell Program Coverage (HPC) can in-
strument Haskell modules and get a count of how many times each expres-
sion is evaluated during execution [18]. Using QuickCheck, we �nd which
properties are failing and generate a counterexample for each failing prop-
erty 4 . For properties without arguments (essentially unit tests), we do not
need any additional arguments, so we can run the property as-is: the coun-

60



3.3. Technical Details — PropR

terexample is the property itself. By applying each property to its coun-
terexample and instrumenting the resulting program with HPC, we can see
exactly which expressions in the module are evaluated in a failing execu-
tion of property 5 . The expressions evaluated in the counterexample of
the property are precisely the expressions for which a replacement would
have an e�ect: non-evaluated expressions cannot contribute to the failing of
a property. We call these the fault-involved expressions. These will be all the
expressions involved in failing tests/properties, and covers every expression
invoked when running counterexamples.

In our simple example, only prop_dup requires a counterexample, for
which QuickCheck produces a simple, non-empty list, [()]. When we then
evaluate prop_abc and prop_dup [()], only the expressions in the non-
empty branch of len are evaluated: the empty branch is not involved in the
fault.

Perforation For the targets, we generate a version of the AST with a new
typed hole in it, in a process we call perforation. When we perforate a target,
we generate a copy of its AST for each fault-involved expression in the target,
where the expression has been replaced with a typed hole 6 . The perforated
ASTs are then compiled with GHC. Since they now have a typed hole, the
compilation will invoke GHC’s valid hole-�t synthesis [19] 7 . We present a
few examples of the perforated versions of len in Figure 3.7.

len [] = 0

len xs = _

len [] = 0

len xs = _ $ map (const (1 :: Int)) xs

len [] = 0

len xs = product $ _

len [] = 0

len xs = product $ _ (const (1 :: Int)) xs

...

Figure 3.7: A few perforated versions of len. N.B. the empty branch is not
perforated, as it is not involved in the fault

61



3. PropR: Property–Based Automatic Program Repair

3.3.2 Fixes

A �x is represented as a map (lookup table) from source locations in the mod-
ule to an expression representing a �x candidate. Merging two �xes is done
by simply merging the two maps. Candidate �xes in PropR come in three
variations, hole-�t candidates, expression candidates, and application candi-
dates.

Hole-�t Candidates Using a custom hole-�t plugin, we extract the list of
valid hole-�ts for that hole, and now have a well-typed replacement for each
expression in the target AST.

Found hole: _ :: [Int] -> Int

In an equation for 'len':

len xs = _ $ map (const (1 :: Int)) xs

Valid hole fits include

head :: [a] -> a

last :: [a] -> a

length :: Foldable t => t a -> Int

maximum :: (Foldable t, Ord a) => t a -> a

minimum :: (Foldable t, Ord a) => t a -> a

product :: (Foldable t, Num a) => t a -> a

sum :: (Foldable t, Num a) => t a -> a

Valid refinement hole fits include

foldl1 (_ :: Int -> Int -> Int)

...

Figure 3.8: Hole-�ts for a perforation of len, where product has been re-
placed with a hole

{<interactive:3:10-15>: head}

{<interactive:3:10-15>: last}

{<interactive:3:10-15>: length}

...

{<interactive:3:10-15>: sum}

Figure 3.9: Candidate �xes derived from the valid hole-�ts in Figure 3.8. The
location refers to product in len

We derive hole-�t candidates directly from GHC’s valid hole-�ts, as seen
in Figure 3.8, giving rise to the �xes in Figure 3.9. These take the form of an

62



3.3. Technical Details — PropR

identi�er (e.g., sum), or an identi�er with additional holes (e.g., foldl1 _)
for re�nement �ts.

Since we synthesize only well-typed programs, we cannot use re�nement
hole-�ts directly: the resulting program would produce a typed hole error.
To use re�nement hole-�ts, we recursively synthesize �ts for the holes in the
re�nement hole-�ts up to a depth con�gurable by the user. This means that
we can generate e.g., foldl1 (+)when the depth is set to 1, and e.g., foldl1
(flip _)→ foldl1 (flip (-)) for a depth of 2, etc. By tuning the re�ne-
ment level and depth, we could synthesize most Haskell programs (excepting
constants). However, in practical terms, the amount of work grows exponen-
tially with increasing depth.

To be able to �nd �xes that include constants (e.g., String or Int) or �xes
that would otherwise require a high and deep re�nement level, we search the
program under repair for expression candidates [37]. These are injected into
our custom hole-�t plugin and checked whether they �t a given hole using
machinery similar to GHC’s valid hole-�t synthesis, but matching the type of
an expression instead of an identi�er in scope. In our example, these would
include 0, (1 :: Int), (x ++ x), and more. For each expression candidate,
we then check that all the variables referred to in the expressions are in scope,
and that the expression has an appropriate type. We also look at application
candidates of the form (_ x), where x is some expression already in the
program, and _ is �lled in by GHC’s valid hole-�t synthesis. This allows us
to �nd common data transformation �xes, such as filter (not . null).

Regardless of technical limitations, this approach can be considered a
form of localized program synthesis exploited for program repair. By using
valid hole-�ts, we can utilize the full power GHC’s type checker when �nding
candidates and avoid having to model GHC’s ever-growing list of language
extensions. This allows us to drastically reduce the search space to well-
typed programs only.

3.3.3 Checking Fixes

Once we have found a candidate �x, we need to check whether they work.
We apply a �x to the program by traversing the AST, and substituting the
expression found in the map with its replacement. We do this for all targets,
and obtain new targets where the locations of the holes have been replaced
with �x candidates. For the given len example, the �xes in Figure 3.9 give
rise to the de�nitions shown in Figure 3.10. We then construct a checking
program that applies the parametrized properties and tests to these new tar-
get de�nitions and compile the result. A simpli�ed example of this can be
seen in Figure 3.11, though we do additional work to extract the results in

63



3. PropR: Property–Based Automatic Program Repair

len1 [] = 0

len1 xs = head $ map (const (1 :: Int)) xs

...

len3 [] = 0

len3 xs = length $ map (const (1 :: Int)) xs

...

len7 [] = 0

len7 xs = sum $ map (const (1 :: Int)) xs

Figure 3.10: New targets de�ned by applying the �xes in Figure 3.9 to the
original len

PropR> mapM sequence
[[quickCheck (prop'_abc len1), quickCheck (prop'_dup len1)]
,[quickCheck (prop'_abc len2), quickCheck (prop'_dup len2)]
,[quickCheck (prop'_abc len3), quickCheck (prop'_dup len3)]
,[quickCheck (prop'_abc len4), quickCheck (prop'_dup len4)]
,[quickCheck (prop'_abc len5), quickCheck (prop'_dup len5)]
,[quickCheck (prop'_abc len6), quickCheck (prop'_dup len6)]
,[quickCheck (prop'_abc len7), quickCheck (prop'_dup len7)]]

-- Evaluates to:
[[False, False],[False, False],[True, True],[False, False]
,[False, False],[False, False],[True, True]]

Figure 3.11: Checking our new targets from Figure 3.10

PropR. It might be the case that the resulting program does not compile: as
our synthesis is based on the types, we might generate programs that do not
parse because of a di�erence in precedence (precedence is checked during
renaming, after type checking in GHC). We remove all those candidate �xes
that do not compile, obtaining an executable that takes as an argument the
property to run, and returns whether that property failed. We run this exe-
cutable in a separate process: running it in the same process might cause our
own program to hang due to a loop in the check. By running in a separate
process, we can kill it after a timeout and decide that the given �x resulted
in an in�nite loop. After executing the program, we have three possible re-
sults: all properties succeeded; the program did not �nish due to an error or
timeout; or some properties failed 8 . In our example, we see in Figure 3.11
that len3 and len7 pass all the properties, meaning that replacing product

with length or sum quali�es as a repair for the program.

64



3.3. Technical Details — PropR

3.3.4 Search

Within PropR, we implemented three di�erent search algorithms: random
search, exhaustive search, and genetic search 9 .

All three algorithms share a common con�guration: they all have a time
budget (measured in wall clock time) after which they exit, and return the
results (if any) that they’ve found.

For the genetic search, PropR implements best practices and algorithms
common to other tools such as Astor [39] or EvoSuite [15]. A mutation con-
sists of either dropping a replacement of a �x, or adding a new replacement
to it. The initial population is created as picking n random mutations. The
crossover randomly picks cut points within the parent chromosomes, and
produces o�spring by swapping the parents’ genes around the cut points.
We support environment-selection [23] with an elitism-rate [3] for trunca-
tion. Elitism means that we pick the top 𝑥% percent of the �ttest candidates
for the next generation, �lling the remaining (100 − 𝑥)% with (other) ran-
dom individuals from the population. We choose random pairs from the
last population as parents and perform environment selection on the par-
ents and their o�spring. Our manual sampling of repairs-in-progress on the
data points showed that genetic search requires high churn in order to be
e�ective: changing a single expression of the program usually failed more
properties than it �xed. Hence, the resulting con�gurations for the experi-
ment have a low elitism- and high mutation- and crossover-rate.

Within random search, we pick (up to a con�gurable size) evaluated
holes at random and pick valid hole-�ts at random with which to �ll them.
We then check the resulting �x and cache it. The primary reason for using
random search is to show that the genetic search is an improvement over
guessing. Nevertheless, Qi et al. [53] showed that random search sometimes
can be superior to genetic search, further motivating its application. Besides,
random search is a standard baseline in search-based software engineering
to assess whether more “intelligent” search algorithms are needed for the
problem under analysis.

For exhaustive search, we check each hole-�t in a breadth-�rst man-
ner: �rst all single replacement �xes, then all two replacement �xes and so
on until the search budget is exhausted. Exhaustive search is deterministic
apart from inherent randomness in QuickCheck. We use exhaustive search
to demonstrate the complexity of the problem, and to show that search is bet-
ter than enumeration. The deterministic search pattern of exhaustive search
would be ideal for a single �x problem such as our example.

The �tness for all searches is calculated as the failure ratio number of failures
number of tests ,

with a non-termination or errors treated as the worst �tness 1 and a �tness

65



3. PropR: Property–Based Automatic Program Repair

of 0 (all tests passing) marks a candidate patch. Such patches are removed
from populations in genetic search and replaced by a new random element.

Within the test-localize-synthesize-rebind loop (Figure 3.3) we perform
one generation of genetic search per loop, and after the selection of chro-
mosomes the program is re-bound and coverage re-evaluated. The authors
observed that this is a bit over-engineered for small programs — the fault lo-
calization did not greatly change when the programs had only a single failing
property. As an optimization, we added a �ag to skip the steps 5 to 7 in the
loop to speed up the actual search. This con�guration was enabled during
experiments presented in Section 3.4. The exhaustive and random search do
not perform any rebinding.

3.3.5 Looping and Finalizing Results

Looping If there are still failing properties after an iteration of the loop,
we apply the current �xes we have found so far to the targets and enter the
next iteration of the loop 10 , repeating the process with the new targets
until all properties have been �xed, or the search budget runs out.

Finalizing and Reporting Results After we have found a set of valid
�xes that pass all the properties, we generate a di� for the original program
based on the program bindings and the mutated targets constituting the �x
11 . This way the resulting patches can be fed into other systems such as
editors or pull requests.

3.4 Empirical Study

3.4.1 Research �estions

Given the concepts presented in Section 3.3, research interests are twofold:
How well does the typed hole synthesis perform for APR, and what is the
individual contribution of properties. As within the integral approach of
PropR, the e�ects cannot truly be dissected; The only contributions that we
can separate for distinct inspection is the use of properties, under which we
will investigate the patches generated by PropR.

We �rst want to answer whether properties add value for guiding the
search. Ideally, properties should improve the repair-rate, speed and quality
regardless of the approach, which we address in RQ1:

66



3.4. Empirical Study

diff --git a/<interactive> b/<interactive>

--- a/<interactive>

+++ b/<interactive>

@@ -1,2 +1,2 @@ len [] = 0

len [] = 0

-len xs = product $ map (const (1 :: Int)) xs

+len xs = length $ map (const (1 :: Int)) xs

diff --git a/<interactive> b/<interactive>

--- a/<interactive>

+++ b/<interactive>

@@ -4,2 +4,2 @@ len [] = 0

len [] = 0

-len xs = product $ map (const (1 :: Int)) xs

+len xs = sum $ map (const (1 :: Int)) xs

Figure 3.12: The �nal result of our repair for len

Research Question 1

To what extent does automatic program repair bene�t from the use of
properties?

Given that properties do have an impact (for better or worse), we want to
quantify its extent on con�guration and selection of search algorithms. For
example, we expect that the use of properties helps with �tness and search,
but will increase the time required for evaluation — this would motivate to
con�gure the genetic search to have small but well guided populations. To
elaborate this we de�ne RQ2 as follows:

Research Question 2

How can we improve (and con�gure) search algorithms when used with
properties?

With the last research question we want to perform a qualitative analysis
on the results found. Previous research showed that just maximizing metrics
is not su�cient. With a manual analysis we look for the issue of over�tting
and try to investigate new issues and new patterns of over�tting.

67



3. PropR: Property–Based Automatic Program Repair

Research Question 3

To what extent is over�tting in automatic program repair addressed by
the use of properties?

3.4.2 Dataset

The novel dataset stems from a student course on functional programming.
Within the exercise, the students had to implement a calculator that parses
a term from text, calculates results and derivations. While the overall notion
is that of a classroom exercise, the problem nevertheless contains real-world
tasks asserted by real-world tests. The calculator itself is a classic student-
exercise, but the subtask of parsing is both common and di�cult, represent-
ing a valuable case for APR. In total, we collected 30 programs that all fail
at least one of 23 properties and one of 20 unit tests. The programs range
from 150 to 700 lines of code (excluding tests) and have at least 5 top level
de�nitions. These are common �le-sizes for Haskell, e.g. PropR itself has
an average of 200 LoC per �le. The faults are localized to one of the three
modules provided to PropR.

The most violated tests are either related to parsing and printing (espe-
cially of trigonometric functions, also seen in Figure 3.18) or about simpli�-
cation (seen in Figure 3.13), which are core-parts of the assignment. The cal-
culator makes a particularly good example for properties, as attributes such
as commutativity, associativity etc. are easy to assert but harder to imple-
ment. Hence, we argue that the calculator-exercise makes a case for typical
programs that implement properties (i.e., they are not arti�cially added for
APR).

Data points were selected from the students submissions if they ful�lled
the following attributes: A it compiled B it failed the unit test suite and the
property-based test suite separately. An error-producing test is considered as
a normal failure. We selected them by these criteria to draw per-datapoint
comparisons of properties to unit tests and their unison. We consider a sep-
arate investigation of repairing unit test failing programs versus properties
failing programs and their over�tting future research.

prop_simplify_idempotency :: Expr -> Bool

prop_simplify_idempotency e =

simplify (simplify e) == simplify e

Figure 3.13: A property asserting the idempotency of simplify

68



3.4. Empirical Study

Table 3.1: Parameters for Grid Experiment

parameter inspected values
tests Unit Tests ; Properties ; Unit Tests + Properties
search random ; exhaustive ; genetic
termination 10 minute search-budget
seeds 5 seeds

The anonymized data is provided in the reproduction package.

3.4.3 Methodology / Experiment Design

To evaluate RQ1 and RQ2 we perform a grid experiment on the dataset with
the parameters presented in Table 3.1. For every of the 45 con�gurations we
make a repair attempt on every point in the dataset. The genetic search uses
a single set of parameters that was determined through probing. We utilize
docker and limit every container to 8 vCPUs @ 3.6ghz and 16gb RAM (the
container’s lifetime is exactly one datapoint). Further information on the
data collection can be found in the reproduction package.

Given this grid experiment, we collect the following values for each data
point in the dataset:

1. Time to �rst result

2. Number of distinct results within 10 minutes

3. The �xes themselves

The search budget starts after a brief initialization, as PropR loads and
instruments the program. We round the measured times to two digits as
recommended by Neumann et al. and remove Type-1-Clones (identical up to
whitespace) from the results [29, 45].

To answer RQ1 we check every trial whether at least one patch was found
(whether it was solved). We then perform a Fisher exact test [55] to see if the
entries originate from the same population, i.e., if they follow the same distri-
bution. We consider results with a p-value of smaller than 0.05 as signi�cant.

To answer RQ2 we perform a pairwise Wilcoxon-RankSum test [49] on
the data points grouped by their test con�guration. The Wilcoxon test is a
non-parametric test and does not make any assumption on data distribution.
In its pairwise application, we �rst compare the e�ect of unit tests against the
e�ect of properties, then unit tests against combined unit tests and properties
etc. We choose a signi�cance level of 95%.

69



3. PropR: Property–Based Automatic Program Repair

After we have seen whether properties have a signi�cant impact on pro-
gram repair, we can quantify the e�ect size by applying the Vargha-Delaney
test [63] to the given pairs of con�gurations. In the Vargha-Delaney test, a
value of e.g. 0.7 means that algorithm B is better than algorithm A in 70%
of the cases, estimating a similar probability of dominance for future appli-
cations on similarly distributed data points. Note that a result of 0.5 does
not mean there was no e�ect — the groups can still be signi�cantly di�erent
without being clearly better.

RQ3 can (to the best of our knowledge) only be answered by human eval-
uation. Existing research on automatic patch-validation by Qi [68] requires
an automatic test-generation framework (which is not available for Haskell)
as well as a gold-standard �x to work as an oracle. They used existing git-
�xes as oracles, but we expect some data points to be correct despite not
matching the sample-solution. Similarly, work by Nilizadeh et al. [46] uti-
lizes formal veri�cation to automatically verify generated patches, but unfor-
tunately, no speci�cations were available for our dataset. Instead, we perform
the analysis manually, similar to [54] and [38]. As there are too many results
to manually inspect, we sampled 70 �xes1 and let two authors label them as
over�t or not over�t. The authors do so based on their domain-knowledge
and in accordance with a given gold-standard. On disagreement, the authors
provide a short written statement before discussing and agreeing on the �x-
status. The conclusion of the discussion is also documented with a short
statement. The manual labels as well as the statements are shared within the
replication package.

3.5 Results

The following section answers the research questions in order and presents
general information gained in the study.

RQ1—Repair Rate In total, PropR managed to �nd patches for 13 of 30

programs of the dataset. In Table 3.2 we show the detailed results of these
13 programs. We found 228 patches in total, with a median of 3 patches

per successful run. A visualization of the results can be seen in Figure 3.14
and Figure 3.15.

For every entry, we performed a Fisher exact test based on the repair per
seed of every test suite. The contingency tables are based on whether the

1The threshold of 70 has been calculated after seeing 230 patches being generated, which
is su�cient sample for a p-value of 0.05 at an error rate of 10%

70



3.5. Results

Table 3.2: Number of independent runs that produced at least one patch for
genetic search

Programs E01 E02 E03 E04 E05 E07 E08 E09 E12 E13 E14 E18 E25

Units 0 1 5 5 5 5 5 5 5 0 0 0 5
Props 5 1 1 0 5 5 5 5 2 1 5 2 3
Both 0 1 4 0 1 5 5 5 3 0 0 0 3

Figure 3.14: Solved Entries per Test-Suite and Algorithm

speci�c seed found patches for the test suite. It showed that 4 of the 13 re-
paired entries were signi�cantly better in producing repairs with properties
(E1, E3, E4, and E14 from Table 3.2).

A global Fisher exact test and Wilcoxon-RankSum test showed no sta-
tistical signi�cant di�erence between the test suites (p-values of 10%-20%).
Whether properties are bene�cial is a highly speci�c topic, and we expect it
more to be a matter whether the bug is properly covered by the test suite.
We argue that properties can produce stronger test suites than unit tests, but
whether they are applicable and well implemented is ultimately up to the
developers.

Figure 3.14 shows genetic search outperforming exhaustive search in any
test suite con�guration, and most e�ectively for properties.

Figure 3.15 shows the overlap of solved entries by test suite. It shows
that four entries were uniquely solvable by using only properties and one
entry was uniquely solvable by the combined test suite. All entries solved by
unit tests have also been solved by the properties. This does not necessarily
imply that properties are better — the patches can still be over�t and are to
be evaluated in RQ3.

71



3. PropR: Property–Based Automatic Program Repair

Figure 3.15: Venn-Diagram of Solved Entries per Suite

Summary RQ1

Properties do not signi�cantly help with producing patches. In our study,
properties found unique patches that unit tests did not produce. The dif-
ference between results in genetic and exhaustive search were greatest
for the properties.

RQ 2 — Repair Speed We grouped the results per seed and compared the
median time-to-�rst-result for each test suite. All two-way hypothesis-tests
reported a signi�cant p-value of less than 0.01, proving that there are signif-
icant di�erences in distributions.

In particular, we performed a test2 whether properties are faster than
unit tests in �nding patches, which was the case with a p-value of 0.02. The
Vargha and Delaney e�ect size test showed an estimate of 0.28 which is con-
sidered a medium-e�ect size, showing that properties are faster than unit
tests.

An overview of the time-to-�rst-result can be seen in Figure 3.16. We
would like to stress that similar to some results of RQ3, the test suites’ speed
seems to behave in such a way that the slowest and hardest test determines
the magnitude of search. Properties do not have a signi�cant overhead by
design, which is positively surprising. The cost of their execution is com-
pensated by the speedup in search.

2Wilcoxon-RankSum with less

72



3.5. Results

Figure 3.16: Distribution of Time to First Patch per Entry

Summary RQ2

Genetic Search �nds patches faster for properties than for unit tests. The
combined test suite also yields combined search speed.

RQ 3 — Manual Inspection From the sample of 70 patches the authors
agreed on 49 to be over�t and 21 to be �t. Given the overall population of
230 and an error rate of 10%, we expect 62 to 76 of total patches to be correct.
This results in a total non-over�t rate of 27% to 33%. In particular, patches
in the sample found for unit tests were over�t in 85% of cases (19/23), but
the properties were over�t in 64% of cases (21/33). The combined test suite
over�t in 63% (9/14) cases.

These are not evenly distributed — some programs are only repaired
over�t while others are always well �xed. Hence, we deduct that of the 13
Entries that have �xes, 3 to 4 have non-over�t repairs. This estimates an ef-
fective repair-rate of 10% or respectively 13%, which performs similar to the
rates reported by Astor [38] (13%) and better than GenProg [38](1-4%). Arja
[72] reports an e�ective repair rate of 8% which we slightly outperform.

A typical example found by manual inspection was adding space-stripping
to the addition-case of showExpr, as seen in Figure 3.17. There is a sin-
gle unit test (see Figure 3.18) to assert a printed addition without spaces.
Within the patch only the "+" case gets repaired — this is due to the prece-
dence of the expression which is correctly picked up. Hitherto, the change
in the addition actually removes all white-space and correctly passes the

73



3. PropR: Property–Based Automatic Program Repair

diff --git a//input/expr_units.hs b//input/expr_units.hs
--- a//input/expr_units.hs
+++ b//input/expr_units.hs
@@ -59,6 +59,6 @@ showExpr (Num n) = show n
showExpr (Num n) = show n
-showExpr (Add a b) = showExpr a ++ " + " ++ showExpr b
+showExpr (Add a b) =
+ showExpr a ++ ((filter (not . isSpace)) (" + ")) ++ showExpr b
showExpr (Mul a b) = showFactor a ++ " * " ++ showFactor b
showExpr (Sin a) = "sin" ++ showFactor a
showExpr (Cos a) = "cos" ++ showFactor a
showExpr (Var c) = [c]

Figure 3.17: A PropR patch showing over�tting on a unit test

prop_unit_showBigExpr :: Bool
prop_unit_showBigExpr = strip (showExpr expr) == strip res
where
res = "sin (2.1 * x + 3.2) + 3.5 * x + 5.7"
strip = filter (not . isSpace)
arg = Expr.sin (add (mul (num 2.1) x) (num 3.2))
expr = add (add (add (mul (num 3.5) x)) (num 5.7)) arg

Figure 3.18: The unit test corresponding to the �x in Figure 3.17

test. This (actually) solves the unit test as expected and is therefore arguably
not truly over�tting. Nevertheless, a developer would perform the string-
stripping on all cases, not only on the addition. Here we see a shortcoming
of the test suite — this would have not been possible if we had a property
prop_showExpr_printNoSpaces or if we simply had unit tests for all cases.
In other data points, where the showExpr had a uni�ed top-level expres-
sion (not an immediate pattern match), the repair was successful by adding
top-level string-stripping. We would also like to stress the quality of the
patch generated despite over�tting: It draws 4 elements (filter, toLower,
isSpace, (.)) which were not in the code beforehand and applied them at
the correct position.

Another issue observed were empty patches — these appeared when the
QuickCheck properties exhibited inconsistent behavior. We suspect a prop-
erty that tests for the idempotency of simplify seen in Figure 3.13, which
requires a randomly generated expression. The property is meant to assert
that e.g., x * 4 * 0 gets reduced to 0 and not to x * 0. Whether this case
(or similar ones) are tested depends on the randomly created expressions —
which makes it an inconsistent test. These are issues with the test suite that
were uncovered due to the hyper-frequent evaluation. The only way to mit-

74



3.6. Discussion

igate this is to provide a handful of unit tests or write a speci�c expression-
generator used for the �aky property. We labeled empty patches to be over�t
as we do not consider them proper repairs.

Summary RQ3

Adding properties reduced the over�t ratio from 85% to 63%, doubling
the number of good patches. The resulting e�ective repair rate of 10% to
13% is comparable to other tools. Over�tting appeared despite the use
of properties, but generally less due to an overall stronger test suite.

3.6 Discussion

Over�tting on Properties Similar to the over�tting of empty patches
shown in RQ3, we had cases of patches where one or more failing prop-
erties exhibited inconsistent behavior, and an over�t patch was considered
a successful patch. We observed an example that changed the simpli�cation
of multiplication to return 0 whenever a variable was in the term. This satis-
�es the prop_MultWith0_Always0 property and should fail other properties
such as multiplicative associativity, but (in rare cases) Quick-Check produced
examples for the other properties that also evaluate to 0.

This over�tting shows that a test suite is not better just because it is utiliz-
ing properties. APR-�tness is still only as good as the test suite — properties
help de�ne better test suites and well-written properties positively in�uence
APR.

Exploitable Over�tting A noticeable side e�ect of the tool is that if the
repair over�ts, it produces numerous (bad) patches, as can be seen from the
number of generated proposals.

However, the repairs’ output is not useless despite the over�tting: the
suggested patches clearly show the shortcomings of the test suite. The pro-
posed over�t patches help developers with fault localization and improving
the test suite. In particular, as properties and unit tests are not exclusive, de-
velopers can consider a test-and-repair-driven approach, where they adjust
the test suite and program iteratively assisted by the repair tool. We consider
this approach attractive for class-room settings, where the programs are of
lower complexity and allow for fast feedback. While we don’t expect PropR
to be enough to solve the tasks for the students, it clearly shows where the
problems in the tests or code are. Exploring class-room usage is an interest-
ing direction for future work.

75



3. PropR: Property–Based Automatic Program Repair

Drastically Increased Search-Space Due to the novel approach to �nd-
ing repair candidates, the search space drastically increased as compared to
using existing expressions or statements only. This can be seen with the ab-
sence of random-search �ndings. Other studies showed at least some results
with random search, sometimes reporting random search as most successful
[53]. As we �nd (many) patches with exhaustive search, the problems are
generally solvable with small changes. This implies that the only reason for
random search to yield no results is the increased search space.

This �nding motivates further investigating the genetic search and its op-
timization for more complex problems that do not achieve timely results with
exhaustive search. We consider it worthwhile to revisit existing datasets, that
were not solvable due to the redundancy assumption in most repair tools, us-
ing a typed hole approach.

Transference to Java As Java is the most prominent language for APR, it
begs the question of which results can be transferred from Haskell into more
mainstream approaches. Properties are supported by JUnit-Plugins3 and can
easily be added to any common test suite and build-tool. The positive e�ects
of properties as presented in Section 3.5 only require Java programs with
su�cient properties. However, the current Java-ecosystems are not utilizing
properties; even less sophisticated JUnit-Features, such as parametrized tests,
are not widely adopted. This is in stark contrast to functional programming
communities, where tools like QuickCheck are popular.

The hole-�tting repair approach cannot be easily reproduced for Java;
The JavaC, unlike GHC, is not intended to be used as a library. Nevertheless,
Java is strictly typed and the basic hole-�tting-approach can be integrated
using meta-programming libraries like Spoon [47]. Many challenges remain:
As Java’s methods are not pure functions, they cannot be just transplanted.
Side e�ects can wreak havoc and just on a technical level polymorphism, that
is often only resolvable dynamically, bares huge follow-up-challenges.

But not all is lost for the JVM: Repair approaches that focus on the byte-
code [12, 16], can easier adapt hole-�tting. In particular, one could imagine
a tool that produces holes for bytecode and introduces the hole-�ts utiliz-
ing more strict JVM Compilers such as Closure or Scala. We consider this
extension a hard but valuable track for further research.

Future Work The primary research challenge we see is to combine ex-
isting approaches with the newly introduced PropR hole-�tting. A hybrid
approach that could produce high churn with techniques from Astor [40] or

3https://github.com/pholser/junit-quickcheck

76

https://github.com/pholser/junit-quickcheck


3.7. Threats to Validity

ARJA [72] in combination with the �ne-grained changes produced by PropR
could solve a broader range of issues. Speci�c to Haskell is the need to intro-
duce left-hand side de�nitions, i.e. new pattern matches or functions. These
could be provided by generative neural networks [2, 7] and either be used as
mutations or as an initial population of chromosomes. Representing multiple
types of changes is only a matter of representation within the chromosome
— the remaining search, �tness and fault localization can be kept as is.

For fault localization, we currently use all the expressions involved in the
counterexamples. However, it should be possible to use the coverage infor-
mation and the passing and failing tests for spectrum-based fault localization
to narrow the fault-involved expressions further to suspicious expressions,
rather than all the expressions involved in the failing test.

In terms of further evaluation, the next steps are user surveys and exper-
iments on real–world applications such as Pandoc4 or Alex5. In particular,
we envision a bot similar to Sorald [14] that provides patch-suggestions on
failing pull-requests. We would like to ask maintainers and the public com-
munity to give feedback on the quality of repairs, and whether the suggested
patches contributed to fault localization or improvements of the test suite
even if not added to the code.

3.7 Threats to Validity

Internal Threats We addressed the randomness in our experiments by
running 5 runs with di�erent seeds according to the suggestions of Arcuri
and Fraser [5]. The tool used in our experiment could contain bugs. We’ve
published it under a FOSS-license to gain further insights and suggestions
from the community. The experiment and dataset may contain mistakes,
which we address by providing a reproduction package and open source the
experiment and data. The package also contains notes on the data-preparation
for the experiment.

External Threats The dataset is based on student data, which could be
considered arti�cial. We stress that student data has been used in literature
for program repair previously [11, 13, 31, 33]. A real-world study on pro-
gram such as Pandoc [10] is part of future work. Pandoc, a popular Haskell
document-converter, is rich in properties that test e.g., for symmetry over
conversions.

4https://pandoc.org/
5https://www.haskell.org/alex/

77

https://pandoc.org/
https://www.haskell.org/alex/


3. PropR: Property–Based Automatic Program Repair

3.8 Conclusion

The goal of this paper is to introduce a new automatic program repair ap-
proach based on types and compiler suggestions, in addition to utilizing
properties for repair �tness and fault localization. To that end, we imple-
mented PropR, a Haskell tool that utilizes GHC for patch-generation and
can evaluate properties as well as unit tests. We provided a dataset with 30
programs and their unit tests and properties. On this dataset we performed
an empirical study to compare the repair rates for di�erent test suites and
search-algorithms, and manually inspect the generated patches.

Our analysis of 230 patches show that we reach an e�ective repair rate of
10%-13% (comparable to other state-of-the-art tools) but have a reduced rate
of over�tting (from 85% to 63% when applying properties). The novel ap-
proach for patch generation produces a greatly increased search space and
promising patches on manual inspection. We observed that properties did
not increase the number of programs for which patches were found, but so-
lutions were less over�t and found faster. Over�tting based on unit tests
persisted into the combined test suite. Similarly, we have observed that prop-
erties can produce cases of over�tting too.

Our results attest to the stronger utilization of language-features for patch
generation to overcome the redundancy assumption, i.e., only reusing exist-
ing code. Using the compiler’s information on types and scopes, the created
patches are semantically correct and come in a much greater variety, which
was reported as a missing feature for many APR tools. Our manual analysis
motivates to use the generated patches (if not directly applicable) as guidance
for fault localization or to improve the test suite.

3.9 Online Resources

PropR is available on GitHub under MIT-license at https://github.com/
Tritlo/PropR. The reproduction package which includes the data, evalua-
tion and a binary of PropR is available on Zenodo https://doi.org/10.

5281/zenodo.5389051

78

https://github.com/Tritlo/PropR
https://github.com/Tritlo/PropR
https://doi.org/10.5281/zenodo.5389051
https://doi.org/10.5281/zenodo.5389051


Bibliography

[1] R. Abreu, P. Zoeteweij, R. Golsteijn, and A. J. van Gemund. A practical
evaluation of spectrum-based fault localization. Journal of Systems and
Software, 82(11):1780–1792, 2009. SI: TAIC PART 2007 and MUTATION
2007.

[2] W. U. Ahmad, S. Chakraborty, B. Ray, and K.-W. Chang. Uni�ed pre-
training for program understanding and generation, 2021.

[3] C. W. Ahn and R. Ramakrishna. Elitism-based compact genetic algo-
rithms. IEEE Transactions on Evolutionary Computation, 7(4):367–385,
2003.

[4] M. Alfadel, D. E. Costa, E. Shihab, and M. Mkhallalati. On the use of
dependabot security pull requests. In 2021 IEEE/ACM 18th International
Conference on Mining Software Repositories (MSR), pages 254–265. IEEE,
2021.

[5] A. Arcuri and G. Fraser. On parameter tuning in search based software
engineering. In International Symposium on Search Based Software En-
gineering, pages 33–47. Springer, 2011.

[6] K. Bhargavan, A. Delignat-Lavaud, C. Fournet, A. Gollamudi,
G. Gonthier, N. Kobeissi, N. Kulatova, A. Rastogi, T. Sibut-Pinote,
N. Swamy, and S. Zanella-Béguelin. Formal veri�cation of smart con-
tracts: Short paper. PLAS ’16, page 91–96, New York, NY, USA, 2016.
Association for Computing Machinery.

[7] M. Chen, J. Tworek, H. Jun, Q. Yuan, H. P. de Oliveira Pinto, J. Ka-
plan, H. Edwards, Y. Burda, N. Joseph, G. Brockman, A. Ray, R. Puri,
G. Krueger, M. Petrov, H. Khlaaf, G. Sastry, P. Mishkin, B. Chan, S. Gray,
N. Ryder, M. Pavlov, A. Power, L. Kaiser, M. Bavarian, C. Winter,
P. Tillet, F. P. Such, D. Cummings, M. Plappert, F. Chantzis, E. Barnes,
A. Herbert-Voss, W. H. Guss, A. Nichol, A. Paino, N. Tezak, J. Tang,

79



Bibliography

I. Babuschkin, S. Balaji, S. Jain, W. Saunders, C. Hesse, A. N. Carr,
J. Leike, J. Achiam, V. Misra, E. Morikawa, A. Radford, M. Knight,
M. Brundage, M. Murati, K. Mayer, P. Welinder, B. McGrew, D. Amodei,
S. McCandlish, I. Sutskever, and W. Zaremba. Evaluating large language
models trained on code, 2021.

[8] K. Claessen and J. Hughes. Quickcheck: A lightweight tool for ran-
dom testing of haskell programs. In Proceedings of the Fifth ACM SIG-
PLAN International Conference on Functional Programming, ICFP ’00,
page 268–279, New York, NY, USA, 2000. Association for Computing
Machinery.

[9] Z. Y. Ding. Patch quality and diversity of invariant-guided search-based
program repair. arXiv preprint arXiv:2003.11667, 2020.

[10] M. Dominici. An overview of pandoc. TUGboat, 35(1):44–50, 2014.

[11] T. Durieux, F. Madeiral, M. Martinez, and R. Abreu. Empirical Review
of Java Program Repair Tools: A Large-Scale Experiment on 2,141 Bugs
and 23,551 Repair Attempts. In Proceedings of the 27th ACM Joint Eu-
ropean Software Engineering Conference and Symposium on the Founda-
tions of Software Engineering (ESEC/FSE ’19), 2019.

[12] T. Durieux and M. Monperrus. Dynamoth: Dynamic code synthesis
for automatic program repair. In Proceedings of the 11th International
Workshop on Automation of Software Test, AST ’16, page 85–91, New
York, NY, USA, 2016. Association for Computing Machinery.

[13] T. Durieux and M. Monperrus. IntroClassJava: A Benchmark of 297
Small and Buggy Java Programs. Technical report, Universite Lille 1,
2016.

[14] K. Etemadi, N. Harrand, S. Larsen, H. Adzemovic, H. L. Phu, A. Verma,
F. Madeiral, D. Wikstrom, and M. Monperrus. Sorald: Automatic patch
suggestions for sonarqube static analysis violations. arXiv preprint
arXiv:2103.12033, 2021.

[15] G. Fraser and A. Arcuri. Evosuite: Automatic test suite generation for
object-oriented software. In Proceedings of the 19th ACM SIGSOFT Sym-
posium and the 13th European Conference on Foundations of Software
Engineering, ESEC/FSE ’11, page 416–419, New York, NY, USA, 2011.
Association for Computing Machinery.

80



Bibliography

[16] A. Ghanbari and L. Zhang. Prapr: Practical program repair via bytecode
mutation. In 2019 34th IEEE/ACM International Conference on Automated
Software Engineering (ASE), pages 1118–1121, 2019.

[17] GHC Contributors. GHC 8.10.4 users guide, 2021.

[18] A. Gill and C. Runciman. Haskell program coverage. In Proceedings
of the ACM SIGPLAN Workshop on Haskell Workshop, Haskell ’07, page
1–12, New York, NY, USA, 2007. Association for Computing Machinery.

[19] M. P. Gissurarson. Suggesting valid hole �ts for typed-holes (experience
report). In Proceedings of the 11th ACM SIGPLAN International Sympo-
sium on Haskell, Haskell 2018, page 179–185, New York, NY, USA, 2018.
Association for Computing Machinery.

[20] D. Gopinath, M. Z. Malik, and S. Khurshid. Speci�cation-based program
repair using sat. In P. A. Abdulla and K. R. M. Leino, editors, Tools and
Algorithms for the Construction and Analysis of Systems, pages 173–188,
Berlin, Heidelberg, 2011. Springer Berlin Heidelberg.

[21] Z. Guo, M. James, D. Justo, J. Zhou, Z. Wang, R. Jhala, and N. Polikar-
pova. Program synthesis by type-guided abstraction re�nement. Proc.
ACM Program. Lang., 4(POPL), dec 2019.

[22] R. Hamlet. Random testing. Encyclopedia of software Engineering, 2:971–
978, 1994.

[23] J. H. Holland et al. Adaptation in natural and arti�cial systems: an in-
troductory analysis with applications to biology, control, and arti�cial in-
telligence. MIT press, 1992.

[24] M. B. James, Z. Guo, Z. Wang, S. Doshi, H. Peleg, R. Jhala, and N. Po-
likarpova. Digging for fold: Synthesis-aided api discovery for haskell.
Proc. ACM Program. Lang., 4(OOPSLA), nov 2020.

[25] S. Katayama. Magichaskeller: System demonstration. In Proceedings of
AAIP 2011 4th International Workshop on Approaches and Applications of
Inductive Programming, page 63, 2011.

[26] C. Kern and M. R. Greenstreet. Formal veri�cation in hardware design:
A survey. ACMTrans. Des. Autom. Electron. Syst., 4(2):123–193, apr 1999.

[27] E. Kmett. The lens library, 2021.

81



Bibliography

[28] X. Kong, L. Zhang, W. E. Wong, and B. Li. Experience report: How
do techniques, programs, and tests impact automated program repair?
In 2015 IEEE 26th International Symposium on Software Reliability Engi-
neering (ISSRE), pages 194–204. IEEE, 2015.

[29] R. Koschke. Survey of research on software clones. In R. Koschke,
E. Merlo, and A. Walenstein, editors, Duplication, Redundancy, and
Similarity in Software, number 06301 in Dagstuhl Seminar Proceed-
ings, Dagstuhl, Germany, 2007. Internationales Begegnungs- und
Forschungszentrum für Informatik (IBFI), Schloss Dagstuhl, Germany.

[30] C. Kreitz. Program synthesis. In Automated Deduction—A Basis for Ap-
plications, pages 105–134. Springer, 1998.

[31] C. Le Goues, Y. Brun, S. Forrest, and W. Weimer. Clari�cations on the
construction and use of the manybugs benchmark. IEEE Transactions
on Software Engineering, 43(11):1089–1090, 2017.

[32] C. Le Goues, S. Forrest, and W. Weimer. Current challenges in automatic
software repair. Software Quality Journal, 21(3):421–443, 2013.

[33] C. Le Goues, N. Holtschulte, E. K. Smith, Y. Brun, P. Devanbu, S. Forrest,
and W. Weimer. The manybugs and introclass benchmarks for auto-
mated repair of c programs. IEEE Transactions on Software Engineering,
41(12):1236–1256, 2015.

[34] C. Le Goues, T. Nguyen, S. Forrest, and W. Weimer. Genprog: A generic
method for automatic software repair. IEEE Transactions on Software
Engineering, 38(1):54–72, 2012.

[35] J. Lee, D. Song, S. So, and H. Oh. Automatic diagnosis and correction
of logical errors for functional programming assignments. Proc. ACM
Program. Lang., 2(OOPSLA), oct 2018.

[36] T. Lutellier, H. V. Pham, L. Pang, Y. Li, M. Wei, and L. Tan. Coconut:
combining context-aware neural translation models using ensemble for
program repair. In Proceedings of the 29th ACM SIGSOFT international
symposium on software testing and analysis, pages 101–114, 2020.

[37] D. Mandelin, L. Xu, R. Bodík, and D. Kimelman. Jungloid mining: Help-
ing to navigate the api jungle. In Proceedings of the 2005 ACM SIGPLAN
Conference on Programming Language Design and Implementation, PLDI
’05, page 48–61, New York, NY, USA, 2005. Association for Computing
Machinery.

82



Bibliography

[38] M. Martinez, T. Durieux, R. Sommerard, J. Xuan, and M. Monperrus. Au-
tomatic repair of real bugs in java: a large-scale experiment on the de-
fects4j dataset. Empirical Software Engineering, 22(4):1936–1964, 2017.

[39] M. Martinez and M. Monperrus. Astor: A program repair library for
java. In Proceedings of ISSTA, 2016.

[40] M. Martinez and M. Monperrus. Astor: Exploring the design space of
generate-and-validate program repair beyond GenProg. Journal of Sys-
tems and Software, 151:65–80, 2019.

[41] M. Martinez, W. Weimer, and M. Monperrus. Do the �x ingredients al-
ready exist? an empirical inquiry into the redundancy assumptions of
program repair approaches. In Companion Proceedings of the 36th In-
ternational Conference on Software Engineering, ICSE Companion 2014,
page 492–495, New York, NY, USA, 2014. Association for Computing
Machinery.

[42] E. Mashhadi and H. Hemmati. Applying codebert for automated pro-
gram repair of java simple bugs. arXiv preprint arXiv:2103.11626, 2021.

[43] C. A. Meadows. Formal veri�cation of cryptographic protocols: A sur-
vey. In International Conference on the Theory and Application of Cryp-
tology, pages 133–150. Springer, 1994.

[44] S. Mechtaev, J. Yi, and A. Roychoudhury. Angelix: Scalable multiline
program patch synthesis via symbolic analysis. In Proceedings of the
38th International Conference on Software Engineering, ICSE ’16, page
691–701, New York, NY, USA, 2016. Association for Computing Ma-
chinery.

[45] G. Neumann, M. Harman, and S. Poulding. Transformed vargha-
delaney e�ect size. In M. Barros and Y. Labiche, editors, Search-Based
Software Engineering, pages 318–324, Cham, 2015. Springer Interna-
tional Publishing.

[46] A. Nilizadeh, G. T. Leavens, X.-B. D. Le, C. S. Păsăreanu, and D. R. Cok.
Exploring true test over�tting in dynamic automated program repair
using formal methods. In 2021 14th IEEE Conference on Software Testing,
Veri�cation and Validation (ICST), pages 229–240, 2021.

[47] R. Pawlak, M. Monperrus, N. Petitprez, C. Noguera, and L. Seinturier.
Spoon: A Library for Implementing Analyses and Transformations of
Java Source Code. Software: Practice and Experience, 46:1155–1179, 2015.

83



Bibliography

[48] R. Peña. An introduction to liquid haskell. arXiv preprint
arXiv:1701.03320, 2017.

[49] T. Pohlert. The pairwise multiple comparison of mean ranks package
(pmcmr). R package, 27(2019):9, 2014.

[50] N. Polikarpova, I. Kuraj, and A. Solar-Lezama. Program synthesis from
polymorphic re�nement types. In Proceedings of the 37th ACM SIGPLAN
Conference on Programming Language Design and Implementation, PLDI
’16, page 522–538, New York, NY, USA, 2016. Association for Comput-
ing Machinery.

[51] N. Polikarpova, D. Stefan, J. Yang, S. Itzhaky, T. Hance, and A. Solar-
Lezama. Liquid information �ow control. Proc. ACM Program. Lang.,
4(ICFP), aug 2020.

[52] Y. Qi, X. Mao, and Y. Lei. E�cient automated program repair through
fault-recorded testing prioritization. In 2013 IEEE International Confer-
ence on Software Maintenance, pages 180–189, 2013.

[53] Y. Qi, X. Mao, Y. Lei, Z. Dai, and C. Wang. The strength of random search
on automated program repair. In Proceedings of the 36th International
Conference on Software Engineering, pages 254–265, 2014.

[54] Z. Qi, F. Long, S. Achour, and M. Rinard. An analysis of patch plausibil-
ity and correctness for generate-and-validate patch generation systems.
In Proceedings of the 2015 International Symposium on Software Testing
and Analysis, ISSTA 2015, page 24–36, New York, NY, USA, 2015. Asso-
ciation for Computing Machinery.

[55] M. Raymond and F. Rousset. An exact test for population di�erentiation.
Evolution, 49(6):1280–1283, 1995.

[56] P. Redmond, G. Shen, and L. Kuper. Toward hole-driven development
with liquid haskell. arXiv preprint arXiv:2110.04461, 2021.

[57] P. M. Rondon, M. Kawaguci, and R. Jhala. Liquid types. In Proceedings
of the 29th ACM SIGPLAN Conference on Programming Language Design
and Implementation, pages 159–169, 2008.

[58] C. Runciman, M. Naylor, and F. Lindblad. Smallcheck and lazy small-
check: automatic exhaustive testing for small values. Acm sigplan no-
tices, 44(2):37–48, 2008.

84



Bibliography

[59] R. K. Saha, Y. Lyu, H. Yoshida, and M. R. Prasad. Elixir: E�ective object-
oriented program repair. In 2017 32nd IEEE/ACM International Confer-
ence on Automated Software Engineering (ASE), pages 648–659. IEEE,
2017.

[60] S. Srivastava, S. Gulwani, and J. S. Foster. From program veri�cation to
program synthesis. In Proceedings of the 37th Annual ACM SIGPLAN-
SIGACT Symposium on Principles of Programming Languages, POPL ’10,
page 313–326, New York, NY, USA, 2010. Association for Computing
Machinery.

[61] C. Trad, R. Abou Assi, W. Masri, and F. Zaraket. Cfaar: Control �ow
alteration to assist repair. In 2018 IEEE International Symposium on Soft-
ware Reliability Engineering Workshops (ISSREW), pages 208–215. IEEE,
2018.

[62] S. Urli, Z. Yu, L. Seinturier, and M. Monperrus. How to design a program
repair bot? insights from the repairnator project. In 2018 IEEE/ACM 40th
International Conference on Software Engineering: Software Engineering
in Practice Track (ICSE-SEIP), pages 95–104. IEEE, 2018.

[63] A. Vargha and H. D. Delaney. A critique and improvement of the cl
common language e�ect size statistics of mcgraw and wong. Journal of
Educational and Behavioral Statistics, 25(2):101–132, 2000.

[64] N. Vazou, L. Lampropoulos, and J. Polakow. A tale of two provers: Ver-
ifying monoidal string matching in liquid haskell and coq. SIGPLAN
Not., 52(10):63–74, sep 2017.

[65] K. Wang, R. Singh, and Z. Su. Dynamic neural program embedding for
program repair. arXiv preprint arXiv:1711.07163, 2017.

[66] M. Wen, J. Chen, R. Wu, D. Hao, and S.-C. Cheung. An empirical anal-
ysis of the in�uence of fault space on search-based automated program
repair. arXiv preprint arXiv:1707.05172, 2017.

[67] Q. Xin. Towards addressing the patch over�tting problem. In 2017
IEEE/ACM 39th International Conference on Software Engineering Com-
panion (ICSE-C), pages 489–490, 2017.

[68] Q. Xin and S. P. Reiss. Identifying test-suite-over�tted patches through
test case generation. ISSTA 2017 - Proceedings of the 26th ACM SIGSOFT
International Symposium on Software Testing and Analysis, pages 226–
236, 2017.

85



Bibliography

[69] Q. Xin and S. P. Reiss. Leveraging syntax-related code for automated
program repair. In 2017 32nd IEEE/ACM International Conference on Au-
tomated Software Engineering (ASE), pages 660–670. IEEE, 2017.

[70] H. Ye, M. Martinez, T. Durieux, and M. Monperrus. A comprehensive
study of automatic program repair on the quixbugs benchmark. Journal
of Systems and Software, 171:110825, 2021.

[71] Z. Yu, M. Martinez, B. Danglot, T. Durieux, and M. Monperrus. Test case
generation for program repair: A study of feasibility and e�ectiveness.
arXiv preprint arXiv:1703.00198, 2017.

[72] Y. Yuan and W. Banzhaf. Arja: Automated repair of java programs via
multi-objective genetic programming. arXiv, 46(10):1040–1067, 2017.

[73] Q. Zhu, A. Panichella, and A. Zaidman. An investigation of compression
techniques to speed up mutation testing. In 2018 IEEE 11th International
Conference on Software Testing, Veri�cation and Validation (ICST), pages
274–284. IEEE, 2018.

86



4
Spectacular: Finding Laws

from 25 Trillion Programs

Ma�hías Páll Gissurarson, Diego Roque, and

James Koppel

International Conference on Software Testing 2023 (ICST ’23)

A
bstract. We present Spectacular, a new tool for automati-

cally discovering candidate laws for use in property-based test-
ing. By using the recently-developed technique of ECTAs (Equality-
Constrained Tree Automata), Spectacular improves upon previous
approaches such as �ickSpec: it can explore vastly larger program
spaces and start generating candidate laws within 20 seconds from a
benchmark where �ickSpec runs for 45 minutes and then crashes
(due to memory limits, even on a 256 GB machine). Thanks to the abil-
ity of ECTAs to e�ciently search constrained program spaces, Spec-
tacular is fast enough to �nd candidate laws in more generally typed
settings than the monomorphized one, even for signatures with dozens
of functions.





4.1 Introduction

Testing is the art of checking that a program works in some scenarios in order
to gain evidence that it works in all. This is especially relevant in the age of
LLMs, where establishing ground-truth to verify auto-generated programs
is important. In its basic form, a developer must manually create a set of
sample inputs and the expected behavior on each. For 20 years, the Haskell
community has boasted their ability to automate this by writing down just
a few properties, and letting a property-based testing tool [8] generate the
inputs automatically. But this only replaces hard labor with hard thought: it
is still di�cult to think of the right properties.

Yet every program implies its set of properties. By generating and testing
a vast number of properties that might hold for a given program, a developer
need merely select from the smörgåsbord that does hold. This is the idea of
�ickSpec, capable of generating interesting properties on numerous data
structures starting with just a list of functions to consider — so long as that
list is small. Beyond the single digits, the exponential growth overwhelms
its search abilities.

We introduce Spectacular, a new tool for automatically discovering
program properties which uses advances in program synthesis to search spaces
of candidate programs which are orders-of-magnitude larger than can be
searched by �ickSpec. For example, for the 5 functions and 3 constants
in Figure 4.1, Spectacular �nds 60 laws compared to �ickSpec’s 28; even
running in a restricted mode, it still �nds more laws than �ickSpec in less
than half the time. It does this thanks to its use of the recently-introduced
ECTA (Equality-Constrained Tree Automata) data structure [24], capable of
compactly representing a space of trillions of possible programs, and e�-
ciently enumerating all the ones which are well-typed (or satisfy any other
property encodable with equality constraints). The bene�ts over �ickSpec
get larger for larger modules. Thanks to ECTAs and our custom enumera-
tion, Spectacular can start generating laws within minutes from the space
of all terms up to size 6 on a signature with 92 functions and constants, a

89



4. Spectacular

main = tacularSpec [
con "reverse" (reverse :: [a] -> [a]),
con "++" ((++) :: [a] -> [a] -> [a]),
con "[]" ([] :: [a]),
con "map" (map :: (a -> b) -> [a] -> [b]),
con "length" (length :: [a] -> Int),
con "concat" (concat :: [[a]] -> [a]),
con "0" (0 :: Int),
con "1" (1 :: Int) ]

Figure 4.1: Example signature for Spectacular, presentation slightly sim-
pli�ed.

reverse (reverse xs) == xs
reverse (xs ++ ys) == reverse ys ++ reverse xs
map f (concat lists) == concat (map (map f)) lists)
length (xs ++ ys) == length xs + length ys

Figure 4.2: Example laws generated by Spectacular from the signature in
�gure 4.1.

space of over 25 trillion terms, with memory consumption never exceeding
1GB. �ickSpec, on the same benchmark gets stuck enumerating terms of
size 4 and crashes from memory exhaustion after 45 minutes on a machine
with 256GB of RAM. And it does all this in only 1400 LOC, compared to
�ickSpec’s 8300.

+

f

a b c

E-class 3

E-class 2

E-class 1

(a) E-graph for 𝒯

q1

a b c

q2

f

+

q3

(b) FTA for 𝒯

+

f

a

f

b

f

c

+ +

(c) E-graph for 𝒰

q1

a b c

q2

f

+

q3

0.0=1.0

(d) ECTA for 𝒰
Figure 4.3: Representations of 𝒯 = {f(𝑡1)+ f(𝑡2)} and 𝒰 = {f(𝑡)+ f(𝑡)}, where

𝑡, 𝑡1, 𝑡2 ∈ {a,b,c}.

In summary, this paper makes the following contributions:

• An automated program property discovery approach based on modern
program synthesis techniques, speci�cally ECTAs.

90



4.2. Background

• The Spectacular tool, capable of discovering program properties orders-
of-magnitude faster than previous approaches on large examples. The
source is available at https://zenodo.org/record/7565003 [18],
along with scripts used to generate the benchmarks in the evaluation.
Note that Spectacular itself is in the spectacular sub-folder.

4.2 Background

4.2.1 Equality-Constrained Tree Automata (ECTAs)

app fun.targ=arg.type

unary scalar

fun arg

f g h x y

Bool

targ tret

Bool Int

targ tret

Bool Char

targ tret

Int Int Char

type type

Figure 4.4: ECTA representing all well-typed size-two terms in the envi-
ronment Γ1 = {𝑥 : Int, 𝑦 : Char, 𝑓 : Bool → Bool, 𝑔 : Int →
Bool,ℎ : Char→ Int}.

Equality-constrained tree automata (ECTAs) [24] are a new data structure
for representing and enumerating a large space of terms with constraints be-
tween subterms. They are most easily explained as an alternative to e-graphs
[13, 32, 44] suitable when di�erent subterms cannot be chosen independently.
We begin with a brief discussion of e-graphs; see Willsey et al [44] for addi-
tional background. We will then give an abridged version of the explanation
of ECTAs from [24].
E-graphs = Independence.

Consider selecting a term from some large space of possibilities, where
each successive node from the top down is a distinct choice. E-graphs are
a compact representation of such spaces where each choice can be made

91

https://zenodo.org/record/7565003


4. Spectacular

Previously-Found 
Laws

ECTA of all terms Partial
Enumeration

Check matches
previous law

(Pruning)

Finish
Enumeration

Quick-
Check

Test
Candidate

Output
Law

Figure 4.5: An overview of Spectacular

independently. For instance, consider the space 𝒯 = {f(𝑡1) + f(𝑡2)} where
𝑡1, 𝑡2 ∈ 𝐶 = {a,b,c}. An e-graph can be constructed by �rst constructing a
node "E-class 1" representing the choice {a,b,c}, then a node "E-class 2" rep-
resenting {f(a), f(b), f(c)}, then a node "E-class 3" which sums two indepen-
dent choices drawn from E-class 2. Figure 4.3a depicts this e-graph. Though
the size of this space is clearly quadratic in |𝐶|, the size of its e-graph is
linear. Thanks to this ability, e-graphs have seen application from program
synthesis [31, 44] to superoptimization [45] to semantic code search [35] to
theorem proving [13]. E-graphs are now known [23, 33] to be equivalent
representationally to �nite tree automata (FTAs). Figure 4.3b shows an FTA
that represents the same term space as the e-graph in �gure 4.3a.
Tree Automata.

A �nite tree automaton (FTA) consists of states (circles) and transitions
(rectangles), with each transition connecting zero or more states to a sin-
gle state. Intuitively, FTA transitions correspond to e-graph nodes, and FTA
states correspond to e-classes. Importantly, both data structures, along with
the similar version space algebras [34], thrive on spaces where terms share
some top-level structure, while their divergent sub-terms can be chosen in-
dependently of each other.
Challenge: Dependent Joins. Consider now the term space 𝒰 = {f(𝑡) +
f(𝑡)}, where 𝑡 ∈ {a,b,c}, that is, a sub-space of 𝒯 where both arguments to
f must be the same term. Such “entangled” term spaces arise naturally in
many domains. For example, in term rewriting or logic programming, we
want to represent the subset of 𝒯 that matches the non-linear pattern 𝑋+𝑋.
More relevantly, we want to represent the space of well-typed Haskell terms,

92



4.2. Background

where, in each application, the type of an argument must equal the parameter
type of the function.

Existing data structures are incapable of fully exploiting shared structure
in such entangled spaces. Figure 4.3c shows an e-graph representing𝒰 : here,
the + cannot be reused because its children are independent, whereas our
example requires a dependency between the two children of +.

Solution: ECTA. ECTAs address this problem by representing dependent
spaces by tree automata whose transitions can be annotated with equality
constraints. For example, �gure 4.3d shows an ECTA that represents the term
space 𝒰 . It is identical to the FTA in �gure 4.3b save for the constraint 0.0 =
1.0 on its + transition. This constraint restricts the set of terms accepted by
the automaton to those where the sub-term at path 0.0 (the �rst child of the
�rst child of +) equals the sub-term at path 1.0 (the �rst child of the second
child of +). The constraint enables this ECTA to represent a dependent join
while still fully exploiting shared structure, unlike the e-graph in �gure 4.3c.

Most importantly, ECTAs come equipped with e�cient algorithms for

enumerating all terms that satisfy the constraints based on constraint
processing via automata intersection, made available in the optimized ecta
library.

Type-driven Synthesis. A striking example of the power of ECTAs is Hectare
[24], the main existing application of ECTAs. Hectare is designed as a re-
placement for Hoogle+ [20], which solves the problem of polymorphic type-
driven program synthesis: given a Haskell type such as (a -> a) -> a ->

Int -> a, intended to take a function 𝑓 and apply it 𝑛 times to some input 𝑥,
it synthesizes a small Haskell program of this type, included the intended so-
lution \g x n -> foldr ($) x (replicate n g). Hoogle+ clocks in at
over 4,000 lines, using an SMT encoding speci�cally tuned for this problem.
Hectare is a measly 400 lines: it constructs an ECTA using the ecta library,
and simply runs the standard enumeration procedure. And yet Hectare is
8× faster.

The Spectacular tool in this paper uses a similar encoding to Hectare
to build an ECTA representing the space of well-typed Haskell programs of
a given signature, but tuned to the set of types occurring in the functions of
interest, and uses �ner-grained enumeration to reduce the number of candi-
date terms inspected by over 1000× on some benchmarks.

Figure 4.4 shows an example of a simpli�ed ECTA for types, where type
variables are restricted to just one of a few base types. We refer to the ECTA
paper [24] for discussion of this encoding and its generalization to arbitrary
polymorphism.

93



4. Spectacular

4.2.2 �ickCheck and the �ickSpec problem

QuickCheck

is a property-based testing framework that uses observational equivalence
based on generating arbitrary data and testing to establish the validity of
properties [8].

QuickSpec

is a state-of-the-art theory exploration system for Haskell that uses QuickCheck
to automatically generate laws based on a set of functions called a signa-
ture [40]. Originally a naive equation generation system, �ickSpec V2
and onwards uses sophisticated techniques based on enumerating terms and
schemas in order to quickly explore a system of equations [40]. We use
�ickSpec as the gold standard to compare against in this paper, and many
of the techniques we use in Spectacular are based on the techniques used in
�ickSpec, albeit augmented with ecta. However, �ickSpec does struggle
with large signatures, as we detail further in section 4.4.

Givens

ECTA

Signature

Pruner

TermGen Uniques

QuickCheckGeneralizer

Laws

Figure 4.6: An overview of the Spectacular loop

94



4.2. Background

Laws according to Haskell (==):
---------------------------------
1. 0 == length []
2. [] == reverse []
3. length xs0_<[A]> == length (reverse xs0_<[A]>)
4. xs0_<[A]> == reverse (reverse xs0_<[A]>)
5. [] == ((++) []) []
6. xs0_<[A]> == ((++) []) xs0_<[A]>
7. xs0_<[A]> == ((++) xs0_<[A]>) []
8. [] == (map f0_<A -> A>) []
9. f1_<A -> A> x0_<A>
== f1_<A -> A> (f1_<A -> A> (f1_<A -> A> x0_<A>))

10. length xs0_<[A]>
== length ((map f0_<A -> A>) xs0_<[A]>)

11. (map f0_<A -> A>) (reverse xs0_<[A]>)
== reverse ((map f0_<A -> A>) xs0_<[A]>)

12. length (((++) xs0_<[A]>) xs1_<[A]>)
== length (((++) (reverse xs0_<[A]>)) xs1_<[A]>)

13. reverse (((++) xs0_<[A]>) xs1_<[A]>)
== ((++) (reverse xs1_<[A]>)) (reverse xs0_<[A]>)

14. ((++) xs0_<[A]>) (((++) xs1_<[A]>) xs2_<[A]>)
== ((++) (((++) xs0_<[A]>) xs1_<[A]>)) xs2_<[A]>

15. ((++) (reverse xs0_<[A]>)) xs1_<[A]>
== reverse (((++) (reverse xs1_<[A]>)) xs0_<[A]>)

Fully monomorphic phase finished..199 terms examined.
43 unique terms discovered.
Starting phase with more types....
Monomorphic phases finished..335 terms examined.
50 unique terms discovered.
Starting mono-polymorphic phase....
16. [] == concat []
17. ((++) (concat xs0_<[[A]]>)) (concat xs1_<[[A]]>)
== concat (((++) xs0_<[[A]]>) xs1_<[[A]]>)

18. xs0_<[[A]]> == (map ((++) [])) xs0_<[[A]]>
19. xs0_<[[A]]>
== (map reverse) ((map reverse) xs0_<[[A]]>)

Mono-polymorphic phase done! 1662 terms examined.
96 unique terms discovered.
Starting fully-polymorphic phase....
20. (map f0_<A -> B>) (concat xs0_<[[A]]>)
== concat ((map (map f0_<A -> B>)) xs0_<[[A]]>)

Done! 3558 terms examined.
100 unique terms discovered

Figure 4.7: Example Spectacular output for terms up to size 5 in 4 phases
for the signature in �gure 4.1. in 3.3sec/39MB

95



4. Spectacular

4.3 The Spectacular tool

The design of Spectacular is inspired by �ickSpec’s [40] approach of
property discovery by �nding and maintaining a set of unique terms which
are used for comparison with newly enumerated terms. We emulate �ick-
Spec’s signature interface for ease of comparison. We use an ECTA to e�-
ciently represent and enumerate the space of well-typed terms of increasing
size that are compared to each other to �nd properties. We make non-trivial
changes to the enumeration of the ECTA to e�ciently prune redundant terms,
reducing the amount of terms to be examined. An overview of Spectacular
can be found in �gure 4.5, with an overview of the loop itself in �gure 4.6.
We denote Haskell data types with red text, a la Type. An example output of
Spectacular is provided in �gure 4.7. Here, x_Int denotes an arbitray Int,
xs_[A] an arbitrary list of As, and so on.

4.3.1 Signatures

Users interact with Spectacular by de�ning a signature that describe the
system of equations that they want to explore. We give an example signature
consisting of a collection of list functions in �gure 4.1.1 This shall serve
as our running example. Note that Spectacular is capable of handling of
much larger spaces, so it can handle entire modules instead of just manually-
speci�ed signatures.

4.3.2 Supplying Givens

To generate and check equations, Spectacular needs to be able compare
values of a given type for equality and to generate arbitrary values of that
type. When compiling Haskell with GHC, this is done by instance resolution
during compile time to �nd the corresponding arbitrary data generators and
equality functions, and insert them into the generated code. However, since
Spectacular is generating and evaluating equations at runtime, the associ-
ated instances must be resolvable at runtime as well. This means that Spec-
tacular requires a runtime mechanism for instance resolution for arbitrary
data generators and equalities. This can be done using the Dynamic datatype,
allowing us to look up and store the associated instances in a data structure
at compile-time, and defer the selection of which instances to use to runtime.
This means that it can test terms without having to resort to code generation,
making the tool simpler and faster. Spectacular does this by looking at the

1The pseudocode in this �gure is almost-identical to the real code, which uses a mecha-
nism to create runtime representations of types and type variables.

96



4.3. The Spectacular tool

CopyProvided Signature:

map :: (a -> b) -> [a] -> [b]

Monomorphize

Phase 1: Monomorphic

map :: (A -> A) -> [A] -> [A]

Generalize

Phase 2:

map :: (A -> B) -> [A] -> [B]

Generalize

Phase 3: Polymorphic, one variable

map :: (a -> a) -> [a] -> [a]

Phase 4: Polymorphic

map :: (a -> b) -> [a] -> [b]

Figure 4.8: The four phases of Spectacular. Each consecutive phase uses
laws and uniques found in the previous phases, but is slightly
more general than the last when it comes to the types it explores.

signature and generating its universe of types [40], meaning all function ar-
guments and return types. for �gure 4.1, these would be [A], [[A]], [B],

(A -> B), and Int. This universe is used to generate the givens for the sig-
nature, which are the equality functions and random variable generators for
types in the universe which can then be looked up at runtime. Generating
the givens at compile-time from the universe of types means that the users
do not have to manually provide these instances, though it comes with the
caveat that types that are not in the signature are not considered synthesis
targets.

4.3.3 Enumerating Terms

An e�cient way to explore the space of equations is to enumerate terms
instead of equations themselves [40]. However, it is important to enumerate
only well-typed terms. For example, for the terms reverse :: [a] -> [a]

and (++) :: [a] -> [a] -> [a] with added givens xs :: [a] and ys

:: [a], there are 5460 possible programs of size ≤ 6 of which only 128 are
well-typed and 84 are base values!

97



4. Spectacular

ECTAs

To e�ciently represent the space of well-typed Haskell terms of a given type,
Spectacular constructs an ECTA for a �xed size 𝑛. The ecta library pro-
vides an e�cient interface for enumeration. It conceptually provides the fol-
lowing API:
partiallyEnumerate :: ECTA -> PartiallyEnumeratedTerm

where a partially-enumerated term can be thought of as a template like map
_ (reverse _), where the two underscores stand for ECTAs representing
some smaller space of terms2. This allows Spectacular to decide whether
to expand or discard a branch (see section 4.3.4).

Phasing

Ordering is important when generating laws. As a simple example, if the
tool discovers reverse (reverse x) == x early, large swaths of the search
space need not be enumerated at all, and undesired redundant rules such
as tail (reverse (reverse x)) == tail x will not be generated. To
increase e�ciency, and to provide the user results immediately, Spectacular
splits its search into several phases, each using a larger search space than the
previous. Each phase is further strati�ed by size, guaranteeing that smaller
terms are discovered before larger. An overview is provided in �gure 4.8.

1. Monomorphic: The �rst phase monomorphizes all types represent-
ing type variables, so that b, c, and d all become the concrete type A,
where A is an arbitrary constant type. For example, the function map

:: (a -> b) -> [a] -> [b] from �gure 4.1 is monomorphized into
map :: (A -> A) -> [A] -> [A]. This yields a very small search
space, enumerable in seconds. Searching this space �rst allows Spec-
tacular to discover rewrites that allows aggressive pruning in later
phases. This phase can discover rules such as reverse (reverse xs)

== xs.

2. Uninterpreted: The second phase replaces all type variables with dis-
tinct constant types (such as A and B). This means that map :: (a ->

b) -> [a] -> [b] is specialized into map :: (A -> B) -> [A] ->

[B]. This phase does not generally result in many laws, but does dis-
cover a few unique, previously unseen terms from the new types, such
as snd (x_A,x_B) :: B, used in later phases.

2Partially-enumerated terms also store equality constraints between the unenumurated
parts; in this case, that the argument type of map’s �rst argument must match the element
type of the list in the second argument.

98



4.3. The Spectacular tool

3. Single-variable polymorphism: This phase replaces all type vari-
ables with the single type variable a, but treats this variable as stand-
ing for an arbitrary type. For example, map :: (a -> b) -> [a] ->

[b] becomes map :: (a -> a) -> [a] -> [a]. Unlike in the pre-
vious phases, this time it contains a proper type variable, a. This is
the approach taken in �ickSpec [40], and allows Spectacular to
�nd most of the laws, unless they require more than one type variable.
An example law �rst discovered at this phase is reverse (concat

reverse xs) == concat (map reverse xs).

4. Arbitrary polymorphism (optional): This phase generalizes all the
type variable representing types in the signature into type variables.
This means that map will have the polymorphic type map :: (a ->

b) -> [a] -> [b]. This phase is not run by default because of the
vast size of the search space. When running this phase on large term
sizes, progress grinds to a halt. An example of a law �rst discov-
ered at this phase is concat (reverse (map reverse lists)) ==

reverse (concat lists). Finding this is harder in a monomorphic
setting: when map :: (a -> b) -> [a] -> [b] becomes monomor-
phized to map :: (a -> a) -> [a] -> [a], the argument function
f must have the same input and output type, f :: a -> a. But the
function concat :: [[a]] -> [a] returns a di�erent type than its
input.

4.3.4 Pruning

The key to e�cient exploration of the equation space is the pruning that
Spectacular applies directly in the ECTA during enumeration. As described
in section 4.3.3, ECTA enumeration is based on a loop that does repeated
expansion of partially-enumerated terms, which are terms for which there
are still some choices to be made. The enumeration runs in a monadic en-
vironment that captures the branching that happens during enumeration
when choices are made. This means that It is helpful to avoid exploring
branches known to only contain terms containing a sub-term that can be
rewritten. As an example, if the tool has previously discovered that x ==

reverse (reverse x), it can discard any partially-enumerated terms con-
taining reverse (reverse _), since any such term is equivalent to the
smaller term containing just x. Choosing the right pruning strategy is im-
portant, we want to be as aggressive as possible while still being sound, in
order to �nd all the relevant equations without having to enumerate and
check an intractable amount of terms. In Spectacular, the pruning strategy

99



4. Spectacular

is based on matching the non-unique terms that Spectacular has discovered
up until that point (i.e. terms that are equivalent to any of the unique terms)
with the partial terms being enumerated. These non-unique terms are either
direct rewrites of an expression (such as reverse [] => []), or include a
variable, e.g. xs ++ [] => xs.

Matching partial terms

A partial term matches another term when the top-level symbol are the same
and all of their sub-expressions are the same. However, it might be the case
that some sub-expressions of the partial term are not enumerated yet. In that
case, Spectacular suspends the pending sub-matches, and runs them when-
ever the pending partial term gets enumerated, allowing the pruning of the
branch as soon as Spectacular knows enough about any of the partial terms
to make the decision that this branch will not be productive. Enumeration
of a term always starts from the top-down, so most of the time the pending
matches are suspended on any of the sub-expressions of the top-level term.
When a match is found, Spectacular immediately stops enumeration of that
branch, and continues with the next one.

4.3.5 Interleaving Testing and Enumeration

For freshly generated terms, Spectacular starts by trying to rewrite it to
a smaller term using the previously-discovered equations. Since it explores
the space of terms in order of size, the existence of a rewrite to a smaller
term means that an equivalent term has already been inspected, and thus
any laws using the larger term would be redundant. The larger term can
thus be discarded. A lot of the performance comes from being able to discard
a term before it is tested or even before it is generated. By interleaving testing
and enumeration [40], Spectacular can learn rewrites that allow it to prune
more aggressively, making it a lot more e�cient than generating all the terms
at once and then start testing. In Spectacular, this is done by generating
terms in batches, and generating and testing all terms of a given type and size
before proceeding to the next one. This allows us to learn all the rewrites for a
certain size before proceeding to a bigger size, and so Spectacular can prune
aggressively when we know a sub-term has a rewrite. Generating per type
is also bene�cial, since Spectacular might generate the same expression at
a di�erent type multiple times (e.g. [] == [] ++ [] :: [a], [] ++ []

:: [Int], etc.). By learning the rewrite for one type and generalizing it,
Spectacular can prune those expressions at other types.

100



4.3. The Spectacular tool

4.3.6 Testing of Terms

Spectacular tracks a set of unique terms of each type that are not morally
equivalent [12] to any other term Spectacular has encountered so far. When
a new candidate term has been generated, Spectacular tests it against all
the other unique terms we’ve discovered of that type. Let xs :: [a] be
the unique term and xs ++ [] be the candidate term. By using the gener-
ated equality instance Spectacular can construct the term representing the
equality xs == xs ++ []. Once we have a term, we have to turn it into a
Property that we can test using QuickCheck. Using the equality and ran-
dom variable generators from the given we generated from the signature, we
have all the components of the term represented as Dynamic instances. This
means that we do not need to do any compilation or code-generation step,
we can immediately use the random variable generators to generate variable
assignments, and apply the dynamic representations of the functions and
equality to generate the Property.

Implementation

To do this, Spectacular generates a Dynamic containing a Property. It then
generates a variable assignment for every variable in the expression, mak-
ing sure that the same variable gets the same value, no matter how many
copies there are in the expression. A speci�c GADT is needed to represent
the Dynamic generator, since we must ensure that the generated values are
Typeable, so that we can wrap them in Dynamic once they’ve been assigned.
The function then generates the Dynamic representation of each of the sub-
expressions, by looking up the value in the variable assignment map or look-
ing up the Dynamic representation of the function from the signature. To
support the monomorphization of the type variables, we need to use a func-
tion that circumvents the checks done by Dynamic at runtime, so that e.g. A
can be used in place of B. A and B and other type variable representatives are
de�ned as data A = A Any, and so can be safely coerced between. Since we
only synthesizewell-typed expressions, we know these coercions are safe. By
generating a Dynamic representation of the property this way, we can e�-
ciently test equations for validity.

4.3.7 Generalization of Laws

To reduce the search space even further, Spectacular only enumerates terms
with the one variable for each type, and reuses that variable whenever a vari-
able of that type is needed. This means that when we generate the associa-
tivity check, it will be discovered as (xs ++ xs) ++ xs == xs ++ (xs ++

101



4. Spectacular

xs) This is based on the observation that [40] if an equation holds for any ar-
bitrary xs and ys, it must in particular also hold whenever xs == ys. This
means it su�ces to explore terms with however many copies of the same
variable, (xs in our example) and then to generalize the law once found. To
generalize a law, Spectacular generates all possible variations of the law
by renaming each variable and adding more variables as needed. This would
generalize the trivial law (xs ++ xs) ++ xs == xs ++ (xs ++ xs) to

• (xs ++ xs) ++ ys == xs ++ (xs ++ ys),

• (xs ++ ys) ++ xs == xs ++ (ys ++ xs), and also

• the actual law: (xs ++ ys) ++ zs == xs ++ (ys ++ zs).
We make sure to generate these laws so that the variables are always in the
same order to avoid duplicates and remove the ones that are equivalent up
to renaming, We then test the most general law �rst (the one with the most
variables) and so on until we �nd a law that hold (if none is found, the original
law is the most general). This way we use variables as a limited form of
schemas [40]. When a law has been discovered, its most general form is
reported, and Spectacular continues until all the phases are �nished for all
types and type constructors.

102



4.4. Evaluation

4.4 Evaluation

Spec Tool Time (s) Memory Laws

Lists

Spectacular (P2) 3.54 21.4 MB 32
�ickSpec 8.55 100.2 MB 28

Spectacular (P3) 55.44 88.7 MB 73
Spectacular (P4) 105.25 155.34 MB 93

Octonions

Spectacular (P2) 0.63 19.9 MB 8
Spectacular (P3) 0.76 20.9 MB 8
Spectacular (P4) 0.92 21.1 MB 8

�ickSpec 0.97 20.3 MB 15

Regex

Spectacular (P2) 10.64 16.9 MB 42
Spectacular (P3) 14.83 17.2 MB 42
Spectacular (P4) 19.5 17.3 MB 42

�ickSpec 458.9 88.9 MB 64

ListMonad

Spectacular (P2) 0.90 15.3 MB 8
Spectacular (P3) 1.85 22.7 MB 8

�ickSpec 2.44 30.5 MB 11
Spectacular (P4) 53.56 213.7 MB 42

HugeLists (3)

Spectacular (P2) 0.30 11.7 MB 22
Spectacular (P3) 0.68 15.8 MB 27
Spectacular (P4) 2.12 29.2 MB 33

�ickSpec 251.4 160 MB 49

HugeLists (4)

Spectacular (P2) 0.73 13.8 MB 37
Spectacular (P3) 4.43 35.9 MB 68
Spectacular (P4) 91.13 125.3 MB 90

�ickSpec >3600 12.3 GB -

HugeLists (5)

Spectacular (P2) 2.92 23.4 MB 66
Spectacular (P3) 83.7 106.9 MB 144
Spectacular (P4) >3600 301.3 MB -

�ickSpec >3600 12.7 GB -

HugeLists (6)

Spectacular (P2) 20.70 40.2 MB 99
Spectacular (P3) 3164.75 434.4 MB 211
Spectacular (P4) >3600 434.4 MB -

�ickSpec - - -

HugeLists (7)

Spectacular (P2) 201.51 54.6 186
Spectacular (P3) >3600 383.2 -
Spectacular (P4) >3600 381.4 -

�ickSpec - - -

Table 4.1: Performance of Spectacular against �ickSpec. Here (Pn) refers to until what
phase we run Spectacular. Note that we did not attempt running �ickSpec
on HugeLists (6) and (7), due to the timeout already being hit in (5). A timeout
is denoted with (>3600), and the maximum resident memory of the process up
to that point is given, e.g. 12.3 GB for �ickSpec on HugeLists (4). The bench-
marks used are taken from �ickSpec, generated using the benchmark script
in https://zenodo.org/record/7565011

103

https://zenodo.org/record/7565011


4. Spectacular

We evaluate the performance of Spectacular against �ickSpec. We match
the parameters when possible in both tools. We take the examples from the
�ickSpec repository, including two shown in the paper, and adapt them to
Spectacular. This involves removing any �ickSpec speci�c options from
the signatures, and adding implementations of random data generators of the
user-provided types de�ned by the example so that we can run QuickCheck.

These tests were run on a cloud-based machine with 32GB of RAM and
6 Intel Xeon E312xx @2GHz 64bit vCPUs.

The signatures we consider are as follows:

• Lists: The signature shown in �gure 4.1, repeated here. All involving
basic list functions. This has 6 components.

main = tacularSpec [
con "reverse" (reverse :: [a] -> [a]),
con "++" ((++) :: [a] -> [a] -> [a]),
con "[]" ([] :: [a]),
con "map" (map :: (a -> b) -> [a] -> [b]),
con "length" (length :: [a] -> Int),
con "concat" (concat :: [[a]] -> [a]),
con "0" (0 :: Int),
con "1" (1 :: Int) ]

• Octonions: This example de�nes an octonion data type and an Arbi-
trary instance for it. The signature is then de�ned as below, and has 3
components:

main = tacularSpec [
con "*" (* :: Oct -> Oct), -- product
con "inv" (recip :: Oct -> Oct) -- inverse
con "1" (1 :: Oct)] -- identity

• Regex: This example de�nes a Regex algebra, including an equality
based on NFAs, and the signature contains the standard Kleene opera-
tions. This has 7 components.

main = tacularSpec [
con "char" (Char :: Sym -> Regex Sym),
con "any" (AnyChar :: Regex Sym),
con "e" (Epsilon :: Regex Sym),
con "0" (Zero :: Regex Sym),
con ";"
(Concat :: Regex Sym -> Regex Sym -> Regex Sym),

con "|"

104



4.4. Evaluation

(Choice :: Regex Sym -> Regex Sym -> Regex Sym),
con "*" (star :: Regex Sym -> Regex Sym)]

• ListMonad: This signature contains the basic monad functions instan-
tiated for List, as well as concatenation. This has 4 components.

main = tacularSpec [
con "return" (return :: A -> [A]),
con ">>=" ((>>=) :: [A] -> (A -> [B]) -> [B]),
con "++" ((++) :: [A] -> [A] -> [A]),
con ">=>"
((>=>) :: (A -> [B]) -> (B -> [C]) -> A -> [C]) ]

• HugeLists: The benchmark from the �ickSpec paper, mentioned in
the abstract, consisting of 33 list functions from Prelude, ranging
from standard functions such as length, to more exotic functions like
(>=>), as well as some internal functions from �ickSpec like usort
that uses a di�erent implementation of sort. See �gure 4.11 for the spec
itself.

On both tools we look for terms of size up to 7, unless a particular size is
speci�ed in parenthesis next to the signature. We stopped the execution in
the experiment at 3600 seconds, though on a di�erent machine �ickSpec
did �nish for HugeList (4) in 38 minutes, whereas HugeLists (4) P4 took 9
seconds on the same machine.

4.4.1 Improvements upon QuickSpec

Performance

As seen in table 4.1 and �gure 4.10, Spectacular is generally faster than
�ickSpec, and consistently using less memory. This di�erence is more
stark when scaling the size of terms we look for and the size of the signature,
as we can see in the HugeLists benchmark.

Due to di�erent patterns of exploration, Spectacular and �ickSpec
sometimes disagree on the number of laws. One example is in HugeLists,
Spectacular �nds that sort from the prelude is the same as usort from the
�ickSpec internals used in the benchmarks. Spectacular thus discards
any laws that mention usort in favor of sort, whereas �ickSpec does
not, and reports additional laws involving usort. However usort == sort

is not a true equivalence, since usort discards duplicates! In this case, the
underlying arbitrary data generator does not generate duplicate elements so

105



4. Spectacular

Spectacular reports this as a law. This highlights the fact that care must be
taken to interpret the “laws” only in the context of their generators.

The memory improvement as seen in �gure 4.9, in particular on the ex-
amples with larger signatures, makes it feasible to run on bigger sizes in
a memory constrained environment, like cloud instances where memory
rather than time is more expensive. It also shows that the limiting factor
for Spectacular is time and not memory requirements.

Running Spectacular until phase 2 gives adequate performance, with
the trade-o� being fewer laws. Each subsequent phase is more expensive but
often returns new kinds of laws. We also see that for the cases where poly-
morphism isn’t present (Octonions and Regex), the performance penalty with
respect to phase 2 is reasonable. A non-trivial law like length (concat xs)

== sum ((map length) xs) (HugeLists (4)) can be discovered in < 30 sec-
onds by Spectacular but takes an hour or more in �ickSpec. Being able to
control which parts of the type space to explore makes users of Spectacular
able to adapt the search to their speci�c requirements.

Scalability

As stated before, the biggest di�erence in performance happens with Huge-
Lists. Under similar parameters to �ickSpec, Spectacular completes its
search in less time and with less memory. This gives evidence that Spec-
tacular scales better than �ickSpec. In particular, the memory consump-
tion does not blow up like in �ickSpec. In a di�erent test, done with a
x2gd.4xlarge AWS instance3, Spectacular generated properties for Huge-
Lists (6) within half a minute for P2. On the other hand, �ickSpec ran
out of memory while generating terms of size 4 after 45 minutes. For P2,
Spectacular even manages to �nish for the default term size 7, whereas
�ickSpec does not return any properties for terms bigger than 4.

Di�erences in Discovered Laws

�ickSpec does have an advantage when it comes to the heuristics it uses
during exploration, allowing them to quickly �nd laws like commutativity,
associativity and distributivity, using hard-coded heuristics during the search
phase and generalizing templates such as (_ + _) [40]. This is particularly
important for speci�cations such as the Octonions, where these form a ma-
jority of the laws, allowing �ickSpec to �nd laws beyond the term size
using these heuristics as a guide. These are laws with multiple variations

3x2gd.4xlarge instances have 16 2.5GHz vCPUs and 256GB of RAM

106



4.5. Related Work

Figure 4.9: HugeList memory use

like (x*x)*y = (x*(x*y)) and (x*y)*x = x*(y*x), whereas Spectacu-
lar �nds only x*(x*y) = (x*x)*y. Spectacular does perform better for
cases like Lists, where Spectacular �nds laws such as reverse (concat

xss) == concat (map reverse (reverse xss)), concat (concat xsss)

== concat (map concat xsss), and map length xss == map length (map

(map f) xss) which �ickSpec does not, though the di�erence in could be
explained by the tactics used for search space enumeration and merging of
laws.

4.5 Related Work

The story of �ickSpec and its o�shoots is often told narrowly: it extends
property-based testing. But automatically discovering useful laws has far
greater reach. In this section, we discuss both immediately-related work in
property-based testing and program synthesis, and similar techniques used
in math, physics, and other parts of computer science.

Property-Based Testing (PBT) Property-Based Testing [16] is the check-
ing of software correctness by �nding properties that should hold of a correct
implementation and gathering evidence they hold, often by random testing
[8]. It has vast research literature and multiple industrial libraries [3, 28].

107



4. Spectacular

Figure 4.10: HugeList compute time

In Haskell, it was popularized by QuickCheck [8], and adopted as a golden
standard for testing libraries.

Synthesis of PBT Properties The pioneer in the problem of automati-
cally generating properties for property-based testing is �ickSpec [10, 40].
It has been applied to lemma discovery in automated theorem proving [9, 22],
and extended with mutation-testing [6] and the ability to discover inequali-
ties and conditional laws [7, 41]. Variants have also been implemented using
comparison of symbolic rather than concrete terms [2, 4].

Data-Driven InvariantGeneration In pure functional programming, data
from random testing can only be collected about the �nal output of a term.
In imperative programming, such data can also be collected about the inter-
mediate states of a function, and used to suggest invariants that hold at that
point. This is the idea of Daikon [14].

Daikon has spawned a massive amount of follow-up research as well as
three for-pro�t companies (most notably Agitar [5]). Of special relevance,
Daikon-like techniques have been used to discover properties used in pro-
gram veri�cation, namely loop invariants [38] and simulation relations for
equivalence checking [39]. Do note that Daikon-like techniques are primar-
ily restricted to properties that hold of a single function, while property-

108



4.5. Related Work

main = tacularSpec [
con "length" (length :: [A] -> Int),
con "sort" (sort :: [Int] -> [Int]),
con "scanr" (scanr :: (A -> B -> B) -> B -> [A] -> [B]),
con "succ" (succ :: Int -> Int),
con ">>=" ((>>=) :: [A] -> (A -> [B]) -> [B]),
con "snd" (snd :: (A, B) -> B),
con "reverse" (reverse :: [A] -> [A]),
con "0" (0 :: Int),
con "," ((,) :: A -> B -> (A, B)),
con ">=>" ((>=>) :: (A -> [B]) -> (B -> [C]) -> A -> [C]),
con ":" ((:) :: A -> [A] -> [A]),
con "break" (break :: (A -> Bool) -> [A] -> ([A], [A])),
con "filter" (filter :: (A -> Bool) -> [A] -> [A]),
con "scanl" (scanl :: (B -> A -> B) -> B -> [A] -> [B]),
con "zipWith" (zipWith :: (A -> B -> C) -> [A] -> [B] -> [C]),
con "concat" (concat :: [[A]] -> [A]),
con "zip" (zip :: [A] -> [B] -> [(A, B)]),
con "usort" (usort :: [Int] -> [Int]),
con "sum" (sum :: [Int] -> Int),
con "++" ((++) :: [A] -> [A] -> [A]),
con "map" (map :: (A -> B) -> [A] -> [B]),
con "foldl" (foldl :: (B -> A -> B) -> B -> [A] -> B),
con "takeWhile" (takeWhile :: (A -> Bool) -> [A] -> [A]),
con "foldr" (foldr :: (A -> B -> B) -> B -> [A] -> B),
con "drop" (drop :: Int -> [A] -> [A]),
con "dropWhile" (dropWhile :: (A -> Bool) -> [A] -> [A]),
con "span" (span :: (A -> Bool) -> [A] -> ([A], [A])),
con "unzip" (unzip :: [(A, B)] -> ([A], [B])),
con "+" ((+) :: Int -> Int -> Int),
con "[]" ([] :: [A]),
con "partition" (partition :: (A -> Bool) -> [A] -> ([A], [A])),
con "fst" (fst :: (A, B) -> A),
con "take" (take :: Int -> [A] -> [A]) ]

Figure 4.11: The HugeLists benchmark from �ickSpec we use to compare
Spectacular and �ickSpec when there are many terms in
scope. Note that from this spec, Spectacular also adds addi-
tional generators for the types involved, and constants such as
empty lists of various types.

109



4. Spectacular

based testing is primarily concerned with hyperproperties/hypersafety, com-
paring multiple programs.

Symbolic Regression Symbolic regression [37] is the problem of �nding
the best mathematical formula to �t a dataset. It has been used to generate
equations de�ning mathematical constants [36], physical laws [25], and con-
jectures over generalized integers [15]. Notable recent work exploits sym-
metry and learned features for inductive bias, discovering a great number of
famous physics formulas. [42, 43].

Of less relevance to this work is the �eld sometimes called Automated
Theorem Discovery, developing systems which propose mathematical theo-
rems by means other than data [11, 26, 27, 29, 30].

Enumerative ProgramSynthesis Both Spectacular and �ickSpec are
enumerative program synthesizers, employing both application-speci�c and
standard techniques from this �eld. Gulwani et al [19] gives a review of this
area.

4.6 Conclusion

Spectacular is an e�cient tool for discovering laws for property-based test-
ing, and has the potential to scale to settings where law discovery has previ-
ously been intractable, such as settings with generalized types. In doing so,
we hope to continue to grow the usability of property-based testing. Beyond
testing, the recent development of ECTA-based synthesis techniques hints at
great leaps in the general usability of synthesis outside limited domains, and
their simple implementation promises easy integration into more tools.

Future Work

Spectacular is a recent development, and there are still many avenues to
explore using Spectacular.

Creating generators on-the-�y

One of the challenges for Spectacular is that it is unaware of recursive gen-
erators, e.g. Arbitrary [a] => Arbitrary [[a]] can be derived from
Arbitrary a => Arbitrary [a], and so on. In the current implementa-
tion, these must be generated and made available in the ECTA for terms
that require a list of arbitrary depth, e.g. concat (concat xs) == concat

(map concat xs), which requires a generator xs :: [[[a]]]. Currently,

110



4.6. Conclusion

this is done by generating instances speci�cally for lists during initialization,
and these instances added to the signature. However, integrating the avail-
able type-classes (and speci�cally the generators of arbitrary data) into the
ECTA itself would be more e�cient, as the current implementation of adding
a list type for every type in the signature makes the search space a lot bigger.

Synthesizing non-equations and implications

Theory-exploration usually focuses on tautologies such as equations, but
properties often only hold for a subset of the domain such as positive in-
tegers. ECTAs are good for encoding such dependencies between premises
and conclusions and should excel at synthesizing such implications and other
non-equations.

E�cient node-based pruning

Branch-pruning reduces the number of inspected terms by orders of magni-
tude, but most of the time is still spent on expanding uni�cation variables
to enumerate out the next term instead of testing of terms. But there are
tree-automata algorithms that can eliminate all undesired terms before even
beginning enumeration [1], which we hope to extend to ECTAs.

More directed enumeration

The ECTA-based technique allows a lot �ner control over how the program
space is enumerated, and the simplicity of the ECTA allows our implemen-
tation to do a lot more exploration on which branches to select in order to
generate more valuable laws (i.e. more general ones �rst, etc.). Exploring
how to control the enumeration from the outside to direct it towards parts
likely to contain laws is an exciting avenue of research, and o�ering better
enumeration heuristics could greatly speed up the current exploration. Of
special interest is would be the ability to heuristically direct the enumera-
tion towards such laws as associativity and commutativity that often hold
for many data-structures.

Rapid exploration of modules

Spectacular is quite e�cient at generating terms in a fully monomorphized
setting, even for large signatures. This could allow users to rapidly explore
the properties of a module without having to manually specify which func-
tions are interesting in a signature. One issue however is how to generate

111



4. Spectacular

the dynamic instances and generators at runtime, though some combination
of template haskell and using GHC as a library might be feasible.

Rapid on-demand generation of properties

Properties can be used to prevent over�tting in program repair, as well as
help with fault localization [17]. Properties are scarce in the wild which limits
the use of property-based repairs. Being able to rapidly generate properties
for a module when it is stable can be of great use in program repair to �x small
bugs that might creep in during development, and can serve as a checkpoint
for a current state of a module and function as regression tests, ensuring that
repairs are patching the issue and not meddling with the correctness of the
whole system.

E�ciency of overall pipeline

While Spectacular uses an e�cient data-structure for coming up with po-
tential candidates to test, the overall e�ciency of the pipeline could be im-
proved, for example by improving the testing part by storing values to quickly
reject false properties in a manner similar to �ickSpec [40]. For testing
whole modules, determining the “interesting” parts of the modules will be
important.

Applicability beyond Haskell

The speed of Spectacular is highly dependent on the type system of Haskell,
which allows us to massively restrict the search space for valid terms and
test only well-typed programs. In languages such as Python, the amount of
“well-typed” terms becomes harder to model. However, with recent addi-
tions such as type hints, an ECTA based approach to synthesizing Python
programs might be possible. In general, languages that allow random data-
generation and have some constraints on the “shape” of valid terms will ad-
mit techniques similar to Spectacular, though care must be taken to accu-
rately model and/or sandbox side-e�ects, but this has been done for both C
and Erlang [21].

Acknowledgements

We want to thank Moa Johansson and Nicholas Smallbone from the Quick-
Spec team for answering our questions and helping us understand its limita-
tions, and John Hughes for his excellent feedback. This work was partially

112



4.6. Conclusion

supported by the Wallenberg AI, Autonomous Systems and Software Pro-
gram (WASP) funded by the Knuth and Alice Wallenberg Foundation.

113





Bibliography

[1] M. D. Adams and M. Might. Restricting grammars with tree automata.
Proceedings of the ACM on Programming Languages, 1(OOPSLA):1–25,
2017.

[2] M. Alpuente, M. A. Feliú, and A. Villanueva. Automatic Inference of
Speci�cations Using Matching Logic. In Proceedings of the ACM SIG-
PLAN 2013 workshop on Partial evaluation and program manipulation,
pages 127–136, 2013.

[3] T. Arts, J. Hughes, J. Johansson, and U. Wiger. Testing Telecoms Soft-
ware with Quviq QuickCheck. In Proceedings of the 2006 ACM SIGPLAN
Workshop on Erlang, pages 2–10, 2006.

[4] G. Bacci, M. Comini, M. A. Feliú, and A. Villanueva. Automatic Syn-
thesis of Speci�cations for First Order Curry Programs. In Proceedings
of the 14th symposium on Principles and practice of declarative program-
ming, pages 25–34, 2012.

[5] M. Boshernitsan, R. Doong, and A. Savoia. From Daikon to Agitator:
Lessons and Challenges in Building a Commercial Tool for Developer
Testing. In Proceedings of the 2006 international symposium on Software
testing and analysis, pages 169–180, 2006.

[6] R. Braquehais and C. Runciman. FitSpec: Re�ning Property Sets for
Functional Testing. In Proceedings of the 9th International Symposium
on Haskell, pages 1–12, 2016.

[7] R. Braquehais and C. Runciman. Speculate: Discovering Conditional
Equations and Inequalities about Black-Box Functions by Reasoning
from Test Results. In Proceedings of the 10th ACM SIGPLAN Interna-
tional Symposium on Haskell, pages 40–51, 2017.

115



Bibliography

[8] K. Claessen and J. Hughes. QuickCheck: A Lightweight Tool for Ran-
dom Testing of Haskell Programs. In Proceedings of the �fth ACM SIG-
PLAN international conference on Functional programming, pages 268–
279, 2000.

[9] K. Claessen, M. Johansson, D. Rosén, and N. Smallbone. Automating
Inductive Proofs Using Theory Exploration. In International Conference
on Automated Deduction, pages 392–406. Springer, 2013.

[10] K. Claessen, N. Smallbone, and J. Hughes. QuickSpec: Guessing Formal
Speci�cations Using Testing. In International Conference on Tests and
Proofs, pages 6–21. Springer, 2010.

[11] S. Colton, A. Bundy, and T. Walsh. On the Notion of Interestingness in
Automated Mathematical Discovery. International Journal of Human-
Computer Studies, 53(3):351–375, 2000.

[12] N. A. Danielsson, J. Hughes, P. Jansson, and J. Gibbons. Fast and loose
reasoning is morally correct. ACM SIGPLAN Notices, 41(1):206–217,
2006.

[13] D. Detlefs, G. Nelson, and J. B. Saxe. Simplify: A Theorem Prover for
Program Checking. Journal of the ACM (JACM), 52(3):365–473, 2005.

[14] M. D. Ernst, J. H. Perkins, P. J. Guo, S. McCamant, C. Pacheco, M. S.
Tschantz, and C. Xiao. The Daikon System for Dynamic Detection
of Likely Invariants. Science of computer programming, 69(1-3):35–45,
2007.

[15] H. Ferguson, D. Bailey, and S. Arno. Analysis of PSLQ, An Integer Rela-
tion Finding Algorithm. Mathematics of Computation, 68(225):351–369,
1999.

[16] G. Fink and M. Bishop. Property-Based Testing: A New Approach
to Testing for Assurance. ACM SIGSOFT Software Engineering Notes,
22(4):74–80, 1997.

[17] M. P. Gissurarson, L. Applis, A. Panichella, A. van Deursen, and
D. Sands. PropR: Property-Based Automatic Program Repair. In
The 44th IEEE/ACM In-ternational Conference on Software Engineering
(ICSE). IEEE/ACM, 2022.

[18] M. P. Gissurarson, J. Koppel, E. de Vries, Z. Guo, and D. A. R. Montoya.
Tritlo/spectacular: ICST 2023, Jan. 2023.

116



Bibliography

[19] S. Gulwani, O. Polozov, R. Singh, et al. Program Synthesis. Foundations
and Trends® in Programming Languages, 4(1-2):1–119, 2017.

[20] Z. Guo, M. James, D. Justo, J. Zhou, Z. Wang, R. Jhala, and N. Polikar-
pova. Program synthesis by type-guided abstraction re�nement. Proc.
ACM Program. Lang., 4(POPL):12:1–12:28, 2020.

[21] J. Hughes. Experiences with quickcheck: testing the hard stu� and
staying sane. In A List of Successes That Can Change the World, pages
169–186. Springer, 2016.

[22] M. Johansson, D. Rosén, N. Smallbone, and K. Claessen. Hipster: Inte-
grating Theory Exploration in a Proof Assistant. In International Con-
ference on Intelligent Computer Mathematics, pages 108–122. Springer,
2014.

[23] J. Koppel. Version Space Algebras are Acyclic Tree Automata, 2021.

[24] J. Koppel, Z. Guo, et al. Searching entangled program spaces. Proceed-
ings of the ACM on Programming Languages, 1(ICFP), 2022.

[25] P. Langley. Data-Driven Discovery of Physical Laws. Cognitive Science,
5(1):31–54, 1981.

[26] D. B. Lenat. Automated Theory Formation in Mathematics. In IJCAI,
volume 77, pages 833–842. Citeseer, 1977.

[27] D. B. Lenat and J. S. Brown. Why AM and EURISKO Appear to Work.
Arti�cial intelligence, 23(3):269–294, 1984.

[28] D. R. MacIver, Z. Hat�eld-Dodds, et al. Hypothesis: A New Approach
to Property-Based Testing. Journal of Open Source Software, 4(43):1891,
2019.

[29] R. McCasland, A. Bundy, and S. Autexier. Automated Discovery of
Inductive Theorems. Special Issue of Studies in Logic, Grammar and
Rhetoric on Computer Reconstruction of the Body of Mathematics: From
Insight to Proof: Festschrift in Honor of A. Trybulec, 10(23):135–149, 2007.

[30] R. L. McCasland and A. Bundy. MATHsAiD: A Mathematical Theorem
Discovery Tool. In 2006 Eighth International Symposium on Symbolic
and Numeric Algorithms for Scienti�c Computing, pages 17–22. IEEE,
2006.

117



Bibliography

[31] C. Nandi, M. Willsey, A. Anderson, J. R. Wilcox, E. Darulova, D. Gross-
man, and Z. Tatlock. Synthesizing structured cad models with equality
saturation and inverse transformations. In Proceedings of the 41st ACM
SIGPLAN Conference on Programming Language Design and Implemen-
tation, pages 31–44, 2020.

[32] G. Nelson and D. C. Oppen. Fast Decision Procedures Based on Con-
gruence Closure. J. ACM, 27(2):356–364, 1980.

[33] J. Pollock and A. Haan. E-Graphs Are Minimal Deterministic Finite Tree
Automata (DFTAs) · Discussion #104 · egraphs-good/egg, 2021.

[34] O. Polozov and S. Gulwani. FlashMeta: A Framework for Inductive Pro-
gram Synthesis. In Proceedings of the 2015 ACM SIGPLAN International
Conference on Object-Oriented Programming, Systems, Languages, and
Applications, pages 107–126, 2015.

[35] V. Premtoon, J. Koppel, and A. Solar-Lezama. Semantic Code Search via
Equational Reasoning. In Proceedings of the 41st ACM SIGPLAN Confer-
ence on Programming Language Design and Implementation, pages 1066–
1082, 2020.

[36] G. Raayoni, S. Gottlieb, Y. Manor, G. Pisha, Y. Harris, U. Mendlovic,
D. Haviv, Y. Hadad, and I. Kaminer. Generating Conjectures on Funda-
mental Constants with the Ramanujan Machine. Nature, 590(7844):67–
73, 2021.

[37] M. Schmidt and H. Lipson. Distilling Free-Form Natural Laws from
Experimental Data. science, 324(5923):81–85, 2009.

[38] R. Sharma, S. Gupta, B. Hariharan, A. Aiken, P. Liang, and A. V. Nori.
A Data Driven Approach for Algebraic Loop Invariants. In European
Symposium on Programming, pages 574–592. Springer, 2013.

[39] R. Sharma, E. Schkufza, B. Churchill, and A. Aiken. Data-Driven Equiv-
alence Checking. In Proceedings of the 2013 ACM SIGPLAN international
conference on Object oriented programming systems languages & appli-
cations, pages 391–406, 2013.

[40] N. Smallbone, M. Johansson, K. Claessen, and M. Algehed. Quick Speci-
�cations for the Busy Programmer. Journal of Functional Programming,
27:e18, 2017.

118



Bibliography

[41] C. Smith, G. Ferns, and A. Albarghouthi. Discovering Relational Spec-
i�cations. In Proceedings of the 2017 11th Joint Meeting on Foundations
of Software Engineering, pages 616–626, 2017.

[42] S.-M. Udrescu, A. Tan, J. Feng, O. Neto, T. Wu, and M. Tegmark. AI Feyn-
man 2.0: Pareto-Optimal Symbolic Regression Exploiting Graph Modu-
larity. Advances in Neural Information Processing Systems, 33:4860–4871,
2020.

[43] S.-M. Udrescu and M. Tegmark. AI Feynman: A Physics-Inspired
Method for Symbolic Regression. Science Advances, 6(16):eaay2631,
2020.

[44] M. Willsey, C. Nandi, Y. R. Wang, O. Flatt, Z. Tatlock, and P. Panchekha.
Egg: Fast and extensible equality saturation. Proceedings of the ACM on
Programming Languages, 5(POPL):1–29, 2021.

[45] Y. Yang, P. Phothilimthana, Y. Wang, M. Willsey, S. Roy, and J. Pienaar.
Equality Saturation for Tensor Graph Superoptimization. In A. Smola,
A. Dimakis, and I. Stoica, editors, Proceedings of Machine Learning and
Systems, volume 3, pages 255–268, 2021.

119





5
CSI: Haskell – Tracing Lazy

Evaluations in a Functional

Language

Ma�hías Páll Gissurarson and Leonhard Applis

Symposium on Implementation and Application of Functional Languages 2023 (IFL ’23)

A
bstract. In non-strict languages such as Haskell the execution

of individual expressions in a program signi�cantly deviates from
the order in which they appear in the source code. This can make it di�-
cult to �nd bugs related to this deviation, since the evaluation of expres-
sions does not happen in the same order as in the source code. At the
moment, Haskell errors focus on values being produced, whereas it is of-
ten the case that faults are due to values being consumed. For non-strict
languages, values involved in a bug are often generated immediately
prior to the evaluation of the buggy code. This creates an opportunity
for evaluation traces, tracking recently evaluated locations (which can
deviate from call-order) to help establish the origin of values involved
in faults. In this paper, we describe an extension of GHC’s Haskell Pro-
gram Coverage with evaluation traces, recording recent evaluations in
the coverage �le, and reporting an evaluation trace alongside the call
stack on exception. This lets us reconstruct the chain of events and
locate the origin of faults. As a case study, we applied our initial imple-
mentation to the nofib-buggy data set and found that some runtime
errors greatly bene�t from trace information.





5.1 Introduction

Problem andMotivation In crime scene investigation (CSI), establishing
the proper sequence of the events constituting the crime is a key technique
in solving cases. While less dramatic, programs can still die: after making
it through compilation, even Haskell code can crash or have faulty output.
When an error occurs at runtime, a common approach is investigating the re-
ported call stack to determine where the error originated. As an example, the
code in Figure 5.1 crashes with *** Exception: Prelude.head: empty

list, and provides an error message containing the stack trace (seen in Fig-
ure 5.2). Despite the crash in head, the root cause of the error is based on
divs n which results in an empty list when n is prime (there is an o�-by-one
error: n should be n+1 in line 4). This is a motivating case of an error caused
by the wrong data being produced, in contrast to errors caused by the right
data being incorrectly consumed 1 (e.g. evaluating an undefined that should
have been replaced). The stack trace in Figure 5.2 does not mention divs,
and only indicates that the error stems from head. This lack of information
makes it hard for developers to reconstruct the events that led to the error
and determine the root cause of the fault.

Without further hints, any function used (and its dependencies) is a po-
tential suspect. This o�set in the tempo of call and evaluation is not a novel
discovery; in fact, a similar example to Figure 5.1 was presented by Marlow
in 2007 [19].

Approach To address the issue, we implement an extension to Haskell
Program Coverage (HPC) built into GHC: in addition to tracking expression
evaluation with ticks, we also emit instructions in the intermediate language
to track the order of started evaluations and completed evaluations. HPC is
discussed in further detail in Section 5.2. We also track the current evalua-
tion depth, the number of ongoing evaluations. This allows us to reconstruct

1This can be translated to blame: is it the producer or the consumer that is wrong? Call
stacks help to spot bugs in consumers, while we focus on bugs in producers for this work.

123



5. CSI: Haskell

1 module Main where
2 divs :: Int -> [Int]
3 divs n = go 2
4 where go i | i == n = []
5 go i = if d i
6 then i:(go (i+1))
7 else go (i+1)
8 d i = n `mod` i == 0
9

10 smallestDiv n = head (divs n)
11

12 main :: IO ()
13 main = print (smallestDiv 13)

Figure 5.1: Our running example, a generator for the divisors of a number,
with an o�-by-one error in the base case.

divs: Prelude.head: empty list
CallStack (from HasCallStack):
error, called at libraries/base/GHC/List.hs:1643:3
in base:GHC.List

errorEmptyList, called at
libraries/base/GHC/List.hs:82:11 in base:GHC.List

badHead, called at libraries/base/GHC/List.hs:78:28
in base:GHC.List

head, called at Div.hs:10:17 in main:Main
CallStack (from -prof):
Main.smallestDiv (Divs.hs:10:17-29)
Main.main (Divs.hs:13:15-28)
Main.main (Divs.hs:13:8-29)
Main.CAF (<entire-module>)

Figure 5.2: Error message generated by the program in Figure 5.1.

124



5.1. Introduction

a partial evaluation tree an overview of completed, partial, and uncompleted
evaluations of expressions, when an exception occurs (see Section 5.3.2 for
details). We also track a global trace index that allows us to reconstruct a
trace across all modules from the trace of each individual module. These
recent evaluations are kept in a circular bu�er alongside the HPC ticks and
can both be inspected directly at runtime or summarized and reported on an
exception alongside the call stack.

In particular, adding an evaluation trace for users is as easy as passing an
additional �ag during the compilation phase. It constitutes a non-invasive
addition to debugging, does not require any changes to the developer’s code
(such as call stack annotations) and allows a better understanding of what is
going on at runtime even when external libraries are being used.

This extension for tracking evaluation traces constitutes the main con-
tribution of this work. Improved runtime errors are one low-level domain
that motivates the extension and is easy to understand for broad audiences.
In the future, these evaluation traces could be used for more sophisticated
use cases, such as program repair or visualization (see Section 5.5).

Experimental Evaluation We apply our prototype to a subset of the
nofib-buggy data set [32]. The data consist of a selection of the nofib pro-
grams which GHC uses for internal validation with arti�cially introduced
bugs (see Section 5.3.7). These bugs result in either a runtime exception (e.g.
index-out-of-bounds or division by zero) or incorrect output. In our pre-
processing of the data set, we

• remove all non-terminating programs, and

• add assert statements to those data points that return incorrect out-
put to force a runtime exception.

This accounts for a total of 21 investigated data points. From the initial �nd-
ings, we see a trend that certain exceptions bene�t from trace information,
depending on the exception type. The data points using assert usually cover
the fault, but the quality of the trace is dependent on the scope of the test
— unit tests are more precise, while system tests produce crowded traces
with many locations irrelevant to the introduced bug. We analyze the per-
formance overhead introduced by collecting traces, which seems stable: most
data points require between 100% and 300% more compute time, depending
on the length of the collected trace. The maximum memory usage increases
from 20% to 120%, and the additional binary size is negligible. There is a gen-
eral trend that the additional memory allocation is related to the number of
modules, while the additional compute time seems to depend primarily on

125



5. CSI: Haskell

the total number of evaluations the program makes. As the nofib data set
is used in the current test suite and the benchmarking of GHC, we consider
it representative for performance estimates. We thus suggest collecting and
reporting the evaluation on a per-exception basis. In the long-term view, we
hope to support debugging for new and seasoned Haskell programmers alike,
but we also see the potential for classroom use: using the data collected by
HPC at runtime the evaluation tree can be partially reconstructed (up to the
length of the trace) and a clearer view of non-strict evaluation presented to
students. Understanding laziness is a big challenge for students from other
programming paradigms, and visualizing (both buggy and working) program
evaluation traces can be a great aid. Our experiments are shared in a repli-
cation package2.

We utilize nix and shell scripts for easy replication, but we also provide
the output (enhanced error messages) for lightweight investigation without
additional dependencies. The contributions presented in this work can be
summarized as follows:

1. a prototype implementation of a non-invasive, optional, coverage-based
tracing of evaluations,

2. example tooling-improvement by reporting of evaluation traces along-
side call stacks,

3. an initial investigation on the nofib-buggy data set, and

4. estimates of performance overhead

5.2 Background and Related Work

Thunks In non-strict languages, values are not evaluated until needed in
the computation. In Haskell, this is implemented through thunks: instead of
directly producing a value, expressions produce a thunk that represents that
unevaluated expression. This behavior is similar to asynchronous concepts
in other languages like Promises (JavaScript) or Task (C#), which are of-
ten used for side-e�ectful computations (e.g. network requests), whereas in
Haskell they are used for all computation. When the value of that expres-
sion is required, the thunk is evaluated and resolved into a value. This value
might be fully-evaluated if it is, e.g., an integer. But it might also be just the
head of a list, with the rest of the list being another thunk. Thunks are in
most cases memoized, meaning that the value is evaluated only once and the

2https://doi.org/10.5281/zenodo.10090375

126

https://doi.org/10.5281/zenodo.10090375


5.2. Background and Related Work

result saved. This is then shared if the value is needed again at a later time,
without requiring recomputation.

Program Coverage and Ticks Haskell Program Coverage (HPC) is a tool
that is part of GHC and allows developers to track which expressions were
evaluated during the execution of the program: whenever an expression is
evaluated, it bumps a number in an array (a “tick”) [12, 14]. These numbers
are unique identi�ers speci�ed in a per-module mix-�le, which are on tick
registered in a companion per-program tix-�le. For this work, we reuse the
mix-�les and identi�ers unchanged, and extend the tix-�les with extra ar-
rays using the identi�ers. Note that HPC does not require changes to the
source code, but instead operates with compilation �ags that emit additional
instructions to the intermediate language. As we consider this an elegant
interaction, we also strive for a �ag-based change to the intermediate lan-
guage. The data collected by HPC can be used to generate a report for how
many times each expression was evaluated and used, for example, to check
the test coverage or identify unused code.

Stack Traces & ErrorMessages While research on the use of stack traces
is a popular topic, e.g. when applied for program slicing or crash reproduc-
tion, their dedicated value for manual debugging is not thoroughly investi-
gated. Bettenberg et al. [7] investigate di�erences originating from di�erent
perspectives of bug reports. One �nding is that developers need information
that users rarely provide, of which stack traces are particularly useful.

We also recommend the work of Becker et al. [6] as a general overview
of research on error messages. Their extensive meta-study covers many �nd-
ings and trends from the �elds of technical implementation, pedagogic use,
and improvements of error messages. Among their primary �ndings relevant
to this work are: students and programmers alike actually read error mes-
sages and stack traces [5], students are discouraged when error messages
do not point toward the faults [28, 33, 38] and that cognitive load should be
considered in the design and presentation of errors [24, 25, 31] (i.e., do not
overwhelm the user with information). Lastly, motivating this work, they
identify localization as one of the de�ning technical attributes of error mes-
sages that constitute their quality, and we aim to enable better localization.

We argue that our work contributes towards the usefulness of traces and
forms a starting point for similar research on Haskell. In the absence of de-
tailed analysis in Haskell, our objective is to provide a similar investigation
to that of Schroeter et al. [29] in the coverage of bug locations through stack
traces. In their work, Schroeter et al. run buggy programs with known faults

127



5. CSI: Haskell

and investigate the produced stack traces to determine whether and where
they contain the fault. We reproduce this for the nofib-buggy stack traces
and apply the same approach for the evaluation traces.

Stack Traces for Haskell We often take stack traces for granted, but they
have only been available in a limited form until recently for Haskell. As late
as 2009, Allwood et al. [2] and Marlow [19] tackled the �rst issues appearing
due to a mismatch between the source code and the optimized executed code.
Their central contribution is to address the di�erences between the behavior
of the stack (and stack traces) and the original program syntax, by introduc-
ing a transformation of GHC core programs into ones that simulate passing
a stack around to preserve the stack trace of the executed program [2]. This
was further improved by introducing the HasCallStack constraint that does
not need to be simulated by the runtime system, but while this constraint
can sometimes be inferred, our experiments with the nofib-buggy data set
show that this is not often the case. Similarly, the simulated call stack adding
-prof in conjunction with the -fprof-auto and -fprof-auto-calls �ags
is either

• not printed for the exceptions in nofib-buggy, with the output being
Main: divide by zero or similar,

• or in the form of

CallStack (from HasCallStack):
assert, called at Main.lhs:78:5 in main:Main

CallStack (from -prof):
Main.main (Main.lhs:(75,3)-(78,59))
Main.CAF (<entire-module>)

indicating the assert and the main-function, without giving further
clue to the location of the bug.

In the output of our running example div from Figure 5.2, adding the -prof
-fprof-auto -fprof-auto-calls improves the situation slightly, indicat-
ing the smallestDiv function, but this improvement does not extend to the
nofib-buggy data points. Using GHC’s pro�ling also requires annotating
the Prelude.head function with a HasCallStack constraint, but it is still
not fully su�cient to locate the fault. Manual annotations with HasCallStack

are non-optimal for programmers (they should be removed in releases) and
in our running example extend the information on the crash, but not on the
source of it.

128



5.2. Background and Related Work

Based on the existing research, the current state of Haskell stack traces
faces two main challenges: higher-order functions and lazy evaluation. Es-
pecially when combined, these tend to disturb stack traces or produce errors
that are not aligned with the reported traces. We hope that our work im-
proves the quality of errors for lazy evaluation and enables later researchers
to improve errors for higher-order functions.

Tracing Evaluations for Haskell There have been some approaches to
tracing Haskell evaluations, which di�er from the coverage-based technique
presented in this work. Chitil et al. [36] compared three systems available
in 2000: HAT [9], HOOD [13], and Freja [21]. Another system mentioned is
Buddha [20]. Some approaches are conceptually di�erent, namely Buddha
and Hood require changes on a source code level. This limits their applica-
tion, e.g. is it hard to extend tracing to external libraries.

A part of Freja consists of a custom Haskell compiler that covers a subset
of the Haskell98 standard (e.g. excluding IO). The code that is compiled is
altered in an intermediate language, and the redexes are recorded. Frejas
concept is the closest to the one presented in this work. Our approach di�ers
by 1 extending existing GHC modules instead of requiring an extra compiler
2 covering a trace of the last evaluations instead of all evaluations and 3

tracking whether an evaluation was started and or �nished separately.
In a similar manner, HAT is tied to nhc98 and transforms the source code

outside of the compilation process, which can cause performance issues and
is harder to integrate with external tools.

With their dual systems of data creation and browsers, the existing tools
went a step further than the contribution of CSI: Haskell. Concepts of how
to use the evaluation data produced are presented in Section 5.5. We also
hope that the separation of tracing and debugging helps to create additive
tools in a modern Haskell landscape.

StaticMethods CSI: Haskell is a dynamic approach, based on running the
code, in contrast to static methods, which analyze faults without running the
code. In Haskell, there is already a rich type system that allows expressing
a wide variety of behavior that is checked at compile time. However, these
do not capture many attributes commonly expressed with properties. One
approach to lift “property-style” testing and debugging to static checking is
to use re�nement types [35]. These types of checks are integrated via a GHC
plugin [27], allowing properties such as x > 0 ==> f x > 0 to be statically
checked by an SMT solver. One extension to this is lazy counterfactual sym-
bolic execution [15]: When paired with re�nement types such as those in

129



5. CSI: Haskell

Liquid Haskell, lazy counterfactual execution allows the localization of re-
�nement type errors, revealing faults in the code to be found without need
for tracing. This constitutes a heavier approach and raises the entry barrier
for ecosystems (including libraries) that do not yet have a re�nement type
speci�cation.

Algorithmic debugging Algorithmic debugging methods are dynamic ap-
proaches based on recording information during program execution and then
asking the developer whether the intermediate statements agree with their
intention [10]. In most languages this debugging su�ers from side e�ects,
which are no concern in pure functional languages, making Haskell a prime
candidate for algorithmic debugging. One tool for Haskell is HOED [10],
which extends the debugger HOOD [13] with GHC’s pro�ling information.
Like HOOD, it requires users to annotate the functions that they wish to
“observe” and create pro�ling cost centers. Based on this combination, it is
possible to construct a computation tree from the collected traces for the ob-
served expressions [10]. This rich approach provides a lot of information but
di�ers from CSI: Haskell in a few points. First, CSI: Haskell utilizes HPC
and thus coverage and does not rely on tracing and cost centers. Second,
our approach is capable of capturing evaluation trees, in a similar manner to
computation trees, providing information on the actual execution of an eval-
uation (that is, the state of each value within the captured tree), but do not
capture the values themselves. Lastly, CSI: Haskell gathers data on the en-
tire project and does not require manual annotations on suspicious elements
of the codebase. Thus, we start with an earlier stage of debugging, where
suspicious elements still need to be identi�ed.

We consider CSI: Haskell not to be a debugger, but instead provides
large-scale trace information for follow-up tools. The example presentation
as evaluation traces could greatly bene�t from concepts of algorithmic de-
bugging, but lies beyond the scope of this work.

5.3 Approach

5.3.1 Evaluation Trees

The approach taken by CSI: Haskell is aimed at the collection of just enough
data at runtime to reconstruct the global evaluation tree of a program. Lazy
functional program evaluation can be viewed in terms of an evaluation tree:
the evaluation of each expression requires the evaluation of its subexpres-
sions whenever those expressions are needed to produce output [18]. For

130



5.3. Approach

1 Γ0 ⊢ head2 ⇓ 𝜆xs. head’ xs,Γ1

2
(. . . )6 (. . . )7

Γ3 ⊢ divs’ n ⇓ xs’,Γ𝑛−1

3

Γ1 ⊢ divs4 ⇓ 𝜆n. divs’ n,Γ2 Γ2 ⊢ n5 ⇓ n’,Γ3 where J𝑛 = 𝑛′K 2
Γ1 ⊢ (divs n)3 ⇓ xs’,Γ𝑛 where J𝑥𝑠 = 𝑥𝑠′K

Γ1 ⊢ head’ xs ⇓ v,Γ𝑛

1 3
Γ0 ⊢ (head (divs n))1 ⇓ v,Γ𝑛

Figure 5.3: Evaluation tree for head (divs n) in Figure 5.1. Superscripts
refer to indices of expressions in the Section 5.3.3 example, while
circled numbers refer to the formulas themselves (for presenta-
tion only).

Haskell, this evaluation has been linearized using implementations of ma-
chines such as Sestoft’s lazy abstract machine [30], placing evaluation trees
on sound theoretical foundations and (by now) a robust amount of experi-
ence. Re-using the theoretical structures lends itself for the application of
debugging too: For debugging, a tree-like view of the expressions and the
order of evaluations for each component is an important part of understand-
ing the programs and how they behave. This is especially relevant when the
programs fail and throw an exception at runtime, e.g. the evaluation tree in
Figure 5.3. This tree shows how evaluation proceeds by resolving the func-
tions to be used in the relevant context (using big-step semantics, denoted
by “⇓” for readability), which are then applied to the fully resolved value of
their arguments, resulting in their �nal value.

5.3.2 Trace Data

To collect the data used in constructing the trace, we extend HPC, the Haskell
Program Coverage built into GHC by Gill et al. [14]. HPC divides the source
code into expression boxes, which are extracted during compilation and stored
in an associated mix �le. The code is then instrumented with additional in-
structions in the intermediate language (C- -) to add a bump to the appropri-
ate array value when the evaluation of an expression starts (i.e. its output is
demanded). At runtime, HPC maintains a module-per-module in-memory
array at runtime, with one entry per expression in the original program.

131



5. CSI: Haskell

Whenever an expression starts to be evaluated, the corresponding array en-
try is incremented with the bump instruction, allowing HPC to track the
coverage of programs [14]. CSI: Haskell adds three additional in-memory
arrays to the runtime system, along with additional bookkeeping, the trace
array, evaluation depth array, and global index array. An example of these
for the program in Figure 5.1 is provided in Section 5.3.3.

The Trace Array

The �rst additional array holds the trace itself, a log of values correspond-
ing to the expression boxes as de�ned by HPC. This array contains an entry
whenever an expression starts being evaluated and another entry whenever
an expression �nishes being evaluated to the outermost constructor. Each
entry represents an explicit expression in the source code, which is the same
as that used for the original HPC coverage: for any single expression 𝑒, the
original coverage tracks the number of times that expression is evaluated.
For example, if we look at an expression 𝑒𝑖 with 𝑖 = 5, at the beginning of
the evaluation of 𝑒, the index number 5 would be incremented in the corre-
sponding array in the tix-�le. With our additions, the index 5 is written in
a trace array both when the expression starts to be evaluated and when it
has �nished evaluating. Note that since Haskell is non-strict, the evaluation
of an expression might not return a fully evaluated value, but rather a weak
normal form represented by a constructor whose components might further,
not yet fully-evaluated thunks. To log these evaluations, an additional reg-
ister is introduced, in which the (possibly partial) value of an expression is
saved. The completion is then recorded, and the register is returned. This
allows us to log the completion of evaluations even when they would have
immediately returned, at the cost of additional overhead at runtime.

The Evaluation Depth Array

The second array keeps a log of the current evaluation depth before the start
of the evaluation of an expression and the depth before the completion of
the evaluation of an expression. Using the two in conjunction, the evalua-
tion depth and trace arrays allow us to reconstruct a partial view of the full
evaluation tree of the program and determine whether an entry in the trace
array corresponds to the start of evaluation or the completion of evaluation
of the indicated expression. It also lets us determine which evaluations have
started and not �nished, allowing us to determine the current call stack in
terms of expressions. This allows us to see which evaluations were started

132



5.3. Approach

and �nished in the same subtree of the evaluation tree, allowing us to high-
light the branches of the evaluation that are “close” in the tree.

The Global Index Array

The third array tracks a global counter, associating each index in the other
two arrays with a unique integer timestamp. This allows us to reconstruct
a global trace across modules, by gathering the trace for each module and
sorting by the global counter.

Trace Length & Circular Bu�ers

Keeping track of an arbitrarily long run of a program would require a trace
entry for each expression evaluated. For long-running programs, this would
require an excessive amount of memory. As noted in the introduction, errors
usually involve recently evaluated data. By keeping the length of the arrays
constant and introducing a modulus operation to the running index, we ef-
fectively treat them as circular bu�ers. This allows us to keep track of only
the most recently evaluated locations at the time of an error, giving us a “win-
dow” into what the program was executing right before the error occurred.
Con�gurable with a compiler �ag, this allows users to select how much mem-
ory overhead they are willing to trade o� for a longer trace. Alongside the
computational impact, there is also an information trade-o�; some errors are
captured only in longer traces, but unnecessarily long traces form a barrier
to understanding. We investigate both trade-o�s in Section 5.4.

5.3.3 Example

As an example, consider the evaluation of the expression head (divs n)

and its evaluation tree shown in Figure 5.3. Here, 𝐸1 corresponds to the
expression superscripted with 1, that is, head (divs n), 𝐸2 to head, 𝐸3 to
(divs n), and so on. Note that each expression has an annotation, as well
as each of its subexpressions. In the interest of brevity, 𝐸6 and 𝐸7 are not
shown, nor are any of their subexpressions. Using the annotations provided
in the �gure, a successful evaluation trace would be

[𝐸1,𝐸2,𝐸2,𝐸3,𝐸4,𝐸4,𝐸5,𝐸5, ...,𝐸3,𝐸1],

with the associated evaluation depths

[0,1,2,1,2,3,2,3,2, ...,2,1].

133



5. CSI: Haskell

The global trace array would simply be [1, . . . ], since there is only one mod-
ule involved. The evaluation proceeds as follows: At the start of evaluation,
the evaluation depth is 0. We start by evaluating head (divs n), indicated
by 𝐸1. The evaluation depth is now 1. 𝐸1 demands evaluation of head, i.e.
𝐸2. Since we started evaluating 𝐸2 and have not �nished 𝐸1, the depth of
the evaluation is now 2. The function head is from a library, which returns
directly, indicated by 𝐸2, and the evaluation depth decreases to 1. Now the
implementation of head, head’ demands its �rst argument, which causes
evaluation of (divs n), i.e. 𝐸3, resulting in an evaluation depth of 2. This
continues until 𝐸3 completes, which in turn lets 𝐸1 complete, and the pro-
gram is fully evaluated. However, if 𝐸3 results in an empty list, the evaluation
Γ ⊢ head’ xs’ ⇓ 𝑣 will throw an exception, aborting execution before log-
ging that 𝐸1 �nished. The trace will show that 𝐸3 was the last expression to
complete evaluation before the error.

5.3.4 Persistence and Tix Upgrades

As CSI: Haskell is integrated with HPC, we also extend the tix �le format
that HPC generates to persist information between runs to include the trace
and evaluation depth information.

Apart from changes to the tix-format, the tracking is non-invasive and
requires no modi�cation of the programs on behalf of the user. Setting the
size of the trace bu�ers to a su�cient length can be used to generate traces
across multiple runs of a program. These extended tix �les, along with the
associated mix �les that store the expression boxes, can be parsed by external
tools for further analysis and presentation. One such presentation is a SARIF
�le derived from the a trace, allowing further integration of Haskell traces
into IDEs [3]. This has been explored with a short prototype by the authors
and is feasible; however, with respect to the scope, we consider it future work
(see Section 5.5). A non-textual presentation of the trace could be to visualize
the behavior of the program as a graph, as shown in Figure 5.5.

5.3.5 Output

The additional information can be accessed via runtime re�ection using the
GHC-API, and consumed by external tools such as automatic program re-
pair tools, testing frameworks, and IDEs. As one immediately accessible ap-
plication, we adjust the current runtime error printing in GHC and add a
message detailing the recently evaluated locations. Using the trace array in
conjunction with the evaluation depth array, we generate a list of recently
evaluated locations. By comparing the current evaluation depth on an er-

134



5.3. Approach

divs: Prelude.head: empty list
CallStack (from HasCallStack):
error, called at
libraries/base/GHC/List.hs:1749:3 in base:GHC.List

errorEmptyList, called at
libraries/base/GHC/List.hs:89:11 in base:GHC.List

badHead, called at
libraries/base/GHC/List.hs:83:28 in base:GHC.List

head, called at Divs.hs:10:17 in main:Main
CallStack (from -prof):
Main.smallestDiv (Divs.hs:10:17-29)
Main.main (Divs.hs:13:15-28)
Main.main (Divs.hs:13:8-29)
Main.CAF (<entire-module>)

Recently evaluated locations:
Divs.hs:4:25-4:26 ... = []
Divs.hs:4:16-4:21 |...,i == n,...=... (was matched)
repeats (11 times in window):
Divs.hs:4:9-7:28 Main:divs>go
Divs.hs:7:21-7:28 ... = go (i+1)
Divs.hs:5:19-5:21 ...else d i
Divs.hs:8:9-8:28 Main:divs>d
Divs.hs:5:16-7:28 ... = if d i...
Divs.hs:4:16-4:21 |...,i == n,...=... (not matched)

Divs.hs:4:9-7:28 Main:divs>go
Divs.hs:3:1-8:28 Main:divs

Previous expressions:
Divs.hs:10:1-10:29 Main:smallestDiv
Divs.hs:13:1-13:29 Main:main

Figure 5.4: The improved error message includes a list of recently evaluated
locations. The preceding number is the index of the expression
in the mix �le, and is used to distinguish di�erent expressions at
a glance.

135



5. CSI: Haskell

Figure 5.5: A graphical representation of the trace in Figure 5.4 generated
by CSI: Haskell and an external script.

ror and the evaluation depth array, we determine the involved expressions
whose evaluation was demanded by the expression on top of the call stack at
the time of crash. We label the rest as “previous expressions”, whose evalua-
tion was complete before the evaluation of the expression on top of the call
stack started, and thus were not triggered by the expression on top of the call
stack. As an example, Figure 5.4 shows the new output generated for divs
from Figure 5.1, which shares the evaluation tree with the example above.

5.3.6 Summarization and Presentation

Since we track all evaluated expressions, the traces can become quite long.
To e�ectively display error messages, �ltering and summarizing traces is im-
portant. The summarization of traces is a rich �eld [16, 22], but often involves
the full instrumentation of the program from the beginning to the end, while
CSI: Haskell has a limited window of recently evaluated locations. To be
useful as the default when printing error messages, the summarization of
the traces must be done quickly and e�ciently, avoiding unnecessary delay
when reporting errors. The current approach in CSI: Haskell is to remove
all unconditionally evaluated expressions done before the last branch. This
makes the traces much shorter while keeping the relevant information about
the evaluated expressions immediately preceding the error. Another sum-
marization that CSI: Haskell implements is to merge repeated patterns that

136



5.3. Approach

occur in loops and indicate them as repetition in the output, with the caveat
that it only captures repetition in the “window” that the trace o�ers and may
miss out on some longer patterns. This technique struggles when there is
variation in the loop such as when it is conditionally di�erent for each itera-
tion, e.g. cases for odd and even numbers. We aim to mitigate such variations
using graph-based trace modeling and using more of the information avail-
able on the structure of the code during summarization (see Section 5.5). As
described earlier, we used the evaluation depth at the time of a crash in con-
junction with the tracking of the evaluation depth to segregate expressions
that were evaluated at the current evaluation depth or lower and those that
occurred earlier. Looking at the evaluation depth array also allows us to
construct a partial notion of the call stack at the time of the crash, though
some information might have been lost due to truncation in long-running
programs. In this way, we can track the call stack for any program with-
out manual annotations of HasCallStack => throughout the code. Since
CSI: Haskell is integrated into the compiler and runtime system itself, it
can be easily applied to external Haskell libraries and dependencies simply
by adding an additional �ag during compilation. This helps developers trace
issues that originate in external libraries and understand the interaction of
their code with the library.

As for presentation, the current implementation reads the relevant loca-
tions from the source �le, and displays them in a manner appropriate to their
form, whether it is a branching if statement, guard or quali�er in a list com-
prehension or a non-branching expression. To further shrink the output, we
only show non-branching expressions up to the last branching expression
in the trace. This allows the focus to be on the control �ow up to the point
where the evaluation of a non-branching expression might have caused the
error. When the total number of evaluations exceeds the window, a short
statement is appended to the error message showing the total number of
evaluations and a suggestion to increase the trace length before rerunning.
We stress that the current presentation is a prototype and outline the need
for further research in Section 5.5.

5.3.7 Data

Apart from the motivating example in Figure 5.1, we draw data from the
nofib-buggy data set [32]. In this data set, Silva introduced arti�cial bugs
of various categories to the data points of the nofib benchmark [23] used in
the GHC test suite.

We utilize a subset of 21 bugs summarized in Table 5.1. Our biggest exclu-
sion criteria of the original nofib-buggywas the category of non-termination;

137



5. CSI: Haskell

since our evaluation is based on crashes, non-termination does not provide
the output we need. Similarly, StackOverflowExceptions are errors of the
environment, not necessarily in the program. These exceptions come from
the runtime system itself and not from the program, so such exceptions were
excluded as well.

Lastly, for ease of comparison, we modi�ed programs that merely pro-
duced incorrect results to fail with an exception using an assert. These
assertions are constructed using the console output (stdout) of the correct
programs. Due to the lack of annotations, the call stacks in these examined
cases are all trivial and only show the call for equality in the assert, but the
evaluation traces often span relevant locations in the code. We admit that
the assertions based on string comparison are neither sophisticated nor best
practice. In the spirit of a vertical prototype, we aimed to see “can evaluation
traces help with testing?” Despite looking a bit ad-hoc, the insights might be
as valuable as the inspection of runtime errors: a healthy project should ad-
dress problems in the test suite and not at runtime. Additions to the testing
toolkit may pay o� earlier than post-mortem debugging tools.

Table 5.1: Overview of the nofib-buggy programs used
hhhhhhhhhhhhhhhError Type

nofib-buggy Imaginary Spectral Real

Exception para�ns
digits-of-e2

sorting
primetest

anna

Assert digits-of-e1
r�b
tak
integrate
gen_regexps
bernoulli
wheel-sieve1
wheel-sieve2
x2n1

chichelli
�sh
minimax

gg
parser
reptile
lift

5.4 Initial Results

To analyze the results, we recompiled the nofib-buggy data set with a fork
of GHC and HPC that implements CSI: Haskell as outlined in Section 5.3.
After obtaining crash logs, two authors looked at each log separately, deriv-

138



5.4. Initial Results

ing data and judging the merits of the new output. All code, data points,
logs, and evaluations are provided in the companion package archived at
https://doi.org/10.5281/zenodo.10090375. The remainder of this sec-
tion covers the summary and highlights of the �ndings.

Summary&Overview Table 5.2 presents the results achieved by the nofib-buggy
data as shown in Section 5.3.7: of the 21 data points, 13 have the location of
the error appear within a trace length of 50 and 19 in traces of length 1000
visualized in Figure 5.6 and Figure 5.7.

Visible in Figure 5.73 is that in data points with exceptions appear much
earlier than their assert counterparts, and most issues are covered at the top
of the exceptions. For most of the data points, the displayed position in the
log was quite prominent (usually within the �rst 10 lines).

The required trace length did not directly depend on the size of the pro-
gram, but rather the amount of thunks that the program builds up during
evaluation. We can see this behavior in Figure 5.9. Naturally, the real data
points produce a lot of thunks and evaluations due to their complexity, but
some of the spectral and imaginary data points (arti�cially) produce large
amounts of thunks (spectral/minimax) or evaluations (imaginary/rfib).
For a helpful exception, it is necessary that both the start of evaluation and
end of evaluation of the involved expressions be in the window of recent
evaluations. However, the window should be as small as possible - as seen in
Table 5.2 for both reptile and minimax the position of the faulty statement
appears later for a trace length of 1000 compared to the trace length of 50.

Performance We provide a summary of the compute time used in Fig-
ure 5.8 and of the allocated (peak) memory in Figure 5.10. All reported values
are derived from a set of �ve measured runs on a dedicated machine, drop-
ping the highest and lowest values (outliers) and averaging the remaining
three. Measurements were conducted with the Linux /usr/bin/time exe-
cutable and the bash time command on a cloud-based machine with 32GB of
RAM and 6 Intel Xeon E312xx @2GHz 64bit vCPUs. We also performed a set
of runs with pro�ling turned on, using the GHC �ags -fprof, -fprof-auto,
and -fprof-auto-calls, which yielded comparable increments. As pro�l-
ing introduces more side e�ects, we prefer to report the non-pro�ling num-
bers in this work. Pro�le performance measures are included in the compan-
ion package.

Figure 5.8 is a kernel density estimate plot [8] summarizing the distri-
bution of the calculated time deltas for all data points. It presents a smooth

3Note the log-scale on the x-axis

139

https://doi.org/10.5281/zenodo.10090375


5. CSI: Haskell

Table 5.2: Summary of nofib-buggy results. LOC indicates the location in
the output after the initial exception, and minimum trace length
the shortest length in which the error location appears out of
[25,50,100,500,1000].

data point Uses assert minimum
trace

length

LOC
50

LOC
1000

LOC
1000
Strict

imaginary

bernoulli Y 50 6 6 6
digits-of-e1 Y 500 - 11 21
digits-of-e2 N 25 1 1 -
gen_regexps Y - - - -
integrate Y - - - -
para�ns N 500 - 24 24
r�b Y 500 - 4 7
tak Y 25 4 4 2
wheel-sieve1 Y 25 2 2 -
wheel-sieve2 Y 50 7 8 -
x2n1 Y 25 2 2 2

spectral

cichelli Y 1000 - 36 -
�sh Y 25 3 3 1
minimax Y 50 28 260 -
primetest N 25 2 2 2
sorting N 25 1 1 1

real

anna N 25 1 1 -
gg Y 25 1 1 -
lift Y 500 - 32 -
parser Y 500 - 13 19
reptile Y 25 29 35 94

140



5.4. Initial Results

Figure 5.6: Minimum trace length to cover the error

Figure 5.7: Histogram of position in the trace by data set and error type.
Note that the x-axis is logarithmic.

growth of wall-clock time for increasing trace length, with the majority of
data points needing between ∼100% and ∼300% longer. We can also observe

141



5. CSI: Haskell

Figure 5.8: Kernel density estimate plot of increased compute time with
varying trace lengths

that outliers move respectively, keeping their relative position throughout in-
creasing trace lengths. In particular, the hungriest data point was rfib from
the imaginary data set that needed 760% longer to �nish. We take a closer
look at rfib in the paragraph limitations.

The box plot in Figure 5.10 shows the memory usage and we observe a
trend towards slightly higher resource need. The data points in the imagi-
nary set allocate∼15% memory at peak use and the data points in the spectral
set ∼60% in the median. For the data points in the real set the biggest dif-
ference was found, with one data point exceeding twice the memory usage.
Due to the small amount of data points, and each data point in the real set
being unique, we don’t want to infer general assumptions about the memory
usage of these programs.

Our recommendation is to investigate these individually when necessary.
We also observe that memory use grows in general with the use of traces,
but the size of the trace does not have a huge impact on the preliminary
results; the overhead originates from data collection, and not from storing
and bookkeeping.

We measured the size of the binary compiled for each program. The
di�erence in most programs was negligible (≤ 1𝑀), but we must note that
the size increase can be notable for longer trace lengths4. For a run gathering
full-traces (i.e., trace length set to 100k), each binary grew between two and
ten Mb.

As traces are used to locate errors, the overhead presented in this work is
expected to occur during development and maintenance and will not a�ect
production environments.

4This is due to an in-binary representation of the tick-arrays, to address internal mechan-
ics such as garbage collection. For normal coverage, the addition is bounded by the modules
and their expressions, while our additions can vary in length and thus grow the binary to
varying degrees.

142



5.4. Initial Results

Figure 5.9: Distribution of maximum evaluation depth and total number of
evaluations

Highlights Among the best results are two data points for the spectral

data set, sorting and primetest. The errors are division-by-zero and a
non-exhaustive pattern match, respectively. These errors have little infor-
mation by default, with no location or stack trace. The extended output (see
sorting in Figure 5.11) with the trace information that CSI: Haskell adds
shows the starting positions where incorrect data was produced and does so
quite precisely.

The second group of promising results is demonstrated by the data points
for minimax and gg: the bug introduced to minimax consists of not applying
a minimax algorithm for Tic-Tac-Toe but instead performing a mini-min. Fig-
ure 5.12 catches this behavior by repeating the Game:min' function, while we
would expect alternating min and max functions. This is not exactly unique
to evaluation traces, but we get “a bit of coverage for free”. Without
enhanced traces, this would also be spotted when running a HPC coverage
report and seeing the uncalled max function.

Similarly gg from the real data set uses a wrong variable, leaving large
parts of a where block unevaluated.

This second group of bugs can be quickly noticed using program cover-
age, and it is possible to get the same information from a coverage report.

143



5. CSI: Haskell

Figure 5.10: Additional memory usage per data set for a trace length of 1000

Unfortunately, we must admit that this is an enlightened guess – we knew
what was going wrong, and thus we found patterns and clues in the traces.
These bugs can be found quite easily when program coverage is visualized,
and thus we hope that a visualization of traces would also yield such bene�ts,
motivating more complex tooling.

Before we leave the highlights, we want to emphasize the possibilities
of generated traces for mechanical evaluations. Some of the traces presented
throughout this paper are a bit crowded or hard to understand, but neverthe-
less, they contain the information necessary for better fault localization and
other warnings. We see potential tooling that spots mismatches in coverage
and evaluation, or that warns about potential performance issues with a lot
of thunks, like we see in the rfib example.

Full Evaluation Record versus Su�x A thread running through this pa-
per is the initial scenario: is it enough to determine what happened imme-
diately before a crash in order to locate the fault? We consider the recent
evaluations the su�x of all evaluations. Shown in Table 5.2, the errors ap-
pear in 90% of the data points examined. Furthermore, a relatively short trace

5Note that some of the right hand sides are missing here, due to a mismatch between the
locations reported by HPC and the actual location in the �le... caused by the mixing of tabs
and spaces! Fixing this is beyond the scope of the prototype.

144



5.4. Initial Results

Main: divide by zero
Recently evaluated locations:
./Sort.hs:146:25-146:25 2
./Sort.hs:146:23-146:23 2
./Sort.hs:146:22-146:26 (2-2)
./Sort.hs:146:14-146:26 k `div` (2-2)

Previous expressions:
./Sort.hs:146:5-146:26 Sort:heapSort>div2
./Sort.hs:128:52-128:67 ... =
repeats (4 times in window):
./Sort.hs:128:5-132:84 Sort:heapSort>to_heap

Main.hs:14:36-14:43 ... =
Main.hs:13:5-22:57 Main:mangle>sort
Main.hs:10:1-22:57 Main:mangle
Main.hs:5:1-7:33 Main:main

There were 668 evaluations in total but only 86 were recorded.
Re-run again with a bigger trace length for better coverage.

Figure 5.11: The improved error log for Sorting - the �rst locations of the
trace are the precise consumers and producers of the division-
by-zero error5.

of only 50 locations per module is su�cient in 62% of the cases. When run-
ning the program in Figure 5.13, there are 95845589 evaluations in total, of
which only 500 were in the �nal recorded trace, which is enough to cover the
faulty location. Despite losing analytical bene�ts of the complete trace, we
are able to locate the fault while keeping only 0.0005217% of the trace. We
thus recommend that, unless necessary for follow-up analysis, capturing the
last evaluations is the favorable approach, with a little �ne-tuning in trace
length depending on the number of evaluations.

Strict vs. LazyBehavior For comparison, we conducted experiments with
the -XStrict language extension, in addition to the -fno-strictness and
-fno-full-laziness �ags to observe changes in evaluation behavior. With-
out the extension, the trace for each data point was identical, with or with-
out the �ags. Our initial (naive) assumption was that for strict programs
consumption and production of errors would align, resulting in always per-
fect locations. The heavy-handed use of the -XStrict extension meant that
some of the programs would no longer terminate, as many of them rely on
laziness to be computable. This resulted in 8 data points that do not �nish
when strict evaluation is forced.

Among the terminating data points, we see mixed results - fish and tak

145



5. CSI: Haskell

Main: Assertion failed
CallStack (from HasCallStack):
assert, called at Main.hs:12:5 in main:Main
CallStack (from -prof):
Main.main (Main.hs:(10,1)-(12,57))
Recently evaluated locations:
./Game.hs:32:59-32:59
./Game.hs:31:30-31:30
./Game.hs:36:23-36:23 e
./Board.hs:57:53-57:56 Board:showsPrec
./Board.hs:57:53-57:56 Board:show
./Game.hs:31:27-31:31 ... =
./Game.hs:31:9-33:71 Game:best>best'
./Game.hs:32:51-32:65 ... = s bs ss
./Game.hs:32:37-32:47 |..., s') = best,...=...

(was matched)
./Game.hs:63:15-63:18 ... = OWin
./Game.hs:63:1-68:47 Game:min'
./Board.hs:57:70-57:71 Board:(==)
./Board.hs:26:33-26:55 ... = [[r1,r2,insert p r3 x]]
./Board.hs:23:26-23:46 |...,not (empty pos board),...=...

(not matched)
./Board.hs:41:24-41:27 ... = True
./Board.hs:39:1-42:18 Board:empty'
./Board.hs:36:26-36:36 ... = empty' x r3
./Board.hs:34:1-36:36 Board:empty
./Board.hs:23:1-26:55 Board:placePiece
./Game.hs:31:9-33:71 Game:best>best'
./Game.hs:32:51-32:65 ... = s bs ss
./Game.hs:32:37-32:47 |..., s') = best,...=...

(was matched)
./Game.hs:63:15-63:18 ... = OWin
./Game.hs:63:1-68:47 Game:min'

...

Figure 5.12: The improved error log for minimax - notice the repetition of
min’, without the appearance of a max’.

146



5.4. Initial Results

perform slightly better, while some evaluations appear later than in their
non-strict con�guration. We attribute this to the general o�set in consump-
tion and production that is also observed in strict & imperative program-
ming languages (e.g., in the work of Zhang et al. [39]): The distance be-
tween fault-introduction and fault-consumption also exists in Haskell, but
non-strict evaluation can shrink the gap between fault-introduction evalua-
tion and fault-consumption evaluation.

To paraphrase, there is always a gap between fault and error, but non-
strict evaluation can bridge this gap by postponing evaluations.

Thus, laziness modulates the distance between bug occurrence and con-
sumption. This a�ects our con�guration for the trace lengths: for short
traces, a faulty location can be covered but might have been rotated out of
the current trace bu�er. With long and short traces alike, there is a chance
that the location is reported later in the output, missing the user’s attention.
An example of this is paraffins, where sharing is a source from which an
incorrect value is evaluated long before it is used. Potentially, this can be fur-
ther adjusted by introducing more laziness into programs by making other
adjustments, such as explicitly disabling sharing [34].

Limitations The �rst limitation is represented in rfib, which needed a
surprisingly long trace for a rather simple program (calculating Fibonacci
numbers). Inspecting Figure 5.13, we observe that the rfib program per-
forms a cascading recursion and postpones evaluation, with a lot of redun-
dant re-computation producing a lot of thunks. For our current reporting,
it is necessary that the trace length covers a coherent sequence (i.e., covers
both creation and resolution of thunks), but this coherence is only perceived
when the trace length is long enough. To mitigate this, users are presented
with a message when we detect that the trace length is not long enough to
cover the entire execution of the program.

We are slightly divided about this topic: On the one hand, many func-
tional pearls utilize recursion and laziness, and thus will trigger a similar
behavior for our traces. Especially for these cases, the insights in the evalua-
tion would have great potential for learning and visualization. On the other
hand, recursion of this type should usually be written in a tail call-optimized
fashion (see Figure 5.14), which is less graceful but is preferable in perfor-
mance and also bene�ts the traces introduced by this work.

The current evaluation traces are also limited by sharing [18]. Consider
the function in Figure 5.15: Here, the call to three_partitions (n-1) is
used in line 3 to generate triples of integers to partition a list. There is an
error in this function that causes the 𝑘s to be invalid out-of-bound indices

147



5. CSI: Haskell

1 nfib :: Double -> Double
2 -- BUG: The following line contains a bug:
3 nfib n = if n < 1 then 1 else nfib (n-1) + nfib (n-2)

Figure 5.13: no�b-buggy’s rfib: The code �rst builds up a large number
of thunks using recursion before completing any evaluation,
posing a challenge for evaluation traces

1 fib :: Double -> Double
2 fib n = fib' n 0 1
3

4 fib' :: Double -> Double -> Double -> Double
5 fib' 0 a _ = a
6 fib' 1 _ b = b
7 fib' n a b = fib (n-1) b (a+b)

Figure 5.14: Alternative Fibonacci implementation that utilizes tail-call op-
timization

1 rads_of_size_n radicals n =
2 [(C ri rj rk)
3 |(i,j,k) <- (three_partitions (n-1)),
4 (ri:ris) <- (remainders (radicals!i)),
5 (rj:rjs) <- (remainders (if (i==j) then (ri:ris)
6 else radicals!j)),
7 rk <- (if (j==k) then (rj:rjs) else radicals!k)]

Figure 5.15: Part of the para�ns example showcasing sharing

148



5.4. Initial Results

for the radicals list. Since i and j are used in lines 4 and 5 respectively,
the triplets are evaluated and then the same result is shared later when the
invalid k is used in line 7. This means that the distance from production to
consumption increases due to sharing, which means that there will be more
unrelated evaluations prior to the error in the trace. This could be addressed
by post-processing traces and removing those evaluations that are “unre-
lated” (such as those in lines 4 and 5), but this would require a richer view
of which values are involved in each expression. This view could possibly
be created by adding provenance information to the values, as discussed in
Section 5.5.

We spare the reader examples for readability, but it is easy to imagine
that evaluation traces are not always useful. Mainly we see that traces either
don’t contain relevant information, or there is a major overhead attached,
and we do not expect people to work through 100+ lines of trace information.
A prominent example of this issue is minimax, for which the fault-location
is covered, but only in the sense that the relevant statement was touched.
It is not immediately clear what to do, as the issue originates from the un-
used parts of the program. Providing too much information can also scare
developers away from reading the error messages[28]. and time spent at
the wrong places is a waste and reduces the trust towards traces and error
messages[6, 33]. Thus, another crucial improvement is to determine what
criteria constitute the relevance of a trace for the problem and only present
them when applicable.

Discussion Based on the limitations and highlights, our current sugges-
tion is to show evaluation traces for certain types of exceptions. The prime
candidates are index errors, failed pattern matches, and exceptions for dy-
namically typed values, such as those from Data.Dynamic. These programs
showed great results without any real overhead and are a perfect point-in-
case for evaluation traces.

From the data points that yield wrong results and have been investigated
using assertions, we see a trend that unit-level tests provide better evalu-
ation traces than system-level tests. In particular, the nofib-buggy/real

data points that use a string comparison for stdin and stdout did not really
bene�t from the evaluation traces. We expect that lower-level tests and asser-
tions are far more useful, especially when combined with a sound approach
to testing and coverage.

We also recognize the size of the errors and sometimes mechanic cover-
age of traces - as shown in Figure 5.6, some faults require long traces to be
covered and the resulting output is bound to be verbose. We do not consider

149



5. CSI: Haskell

these traces to be actionable due to their size and the e�ort necessary to com-
prehend them. Nevertheless, we hope that the tools can pick up the verbose
trace information to further �lter and visualize critical elements of the code.

Currently, Prelude provides two functions error and
errorWithoutStackTrace. We suggest expanding this to errors with (only)
evaluation traces and a combination of stack and evaluation. The choice is
left to individual exceptions as to whether evaluation traces make a worth-
while addition. Another necessary step is to provide a starting guide on how
to read and use evaluation traces. Typically, people google their exceptions
to �nd some help [6, 26], but with this newly introduced addition, that is
not an option. Thus, some kind of central starting point and tutorial should
accompany any changes.

5.5 Next Steps

Evaluation Asserts A potential new area is the construction of evaluation
asserts - using the enhanced coverage information, and a known expression
in the source code, one can formulate tests that check for the (full) evaluation
of an expression. While this comes with some di�culties in implementation
(e.g. not evaluating the expression through the assert), there are certain ar-
eas where this can support developers: One application of this is in debug-
ging, for which developers might want to check the state of their variables.
Although this is not exactly in the spirit of functional paradigms, existing
research [11] shows that Haskell developers often fall back to imperative ap-
proaches during debugging. Furthermore, we face functions such as foldr,
foldr’ and co. whose results are identical, but their internal traversal strate-
gies di�er. Another application is for systems that revolve around or provide
evaluation strategies such as GHC itself. It can provide capabilities to test,
e.g. BangPatterns and data structures.

Study A de�nite next step is a detailed study. The examples presented in
this work highlight initial results but hardly represent the real world. Thus,
the authors plan to conduct a broader study utilizing most of the nofib-buggy
real data points and modern examples from the HasBugs data set [4]. Such
a study should help to grasp how often evaluation trace information covers
bugs, and, if so, how long the trace should be.

Furthermore, a study is necessary to estimate the computational feasi-
bility. Additional instrumentation always comes with a performance cost,
and the exploration in nofib-buggy is unfortunately not representative of a
complete evaluation.

150



5.5. Next Steps

Provenance of Values One problem that arises when strictness and shar-
ing are involved is that an expression might have been evaluated long before
usage, such as the k in the para�ns example (Figure 5.15). This means that
many unrelated evaluations occur between the production and consumption
of a value, making the trace less useful to �nd the source of the error. One
way to address is to attach provenance to values, highlighting the part of a
trace involved in the production of any values touched on in an error.

Environment Integration and Presentation This work presents basic
steps and low-level implementation for evaluation traces, but the �ndings
might be diamonds in the rough. Especially for longer traces of the real data
points, guidance and assistance are necessary. We touched on potential tools
and extensions throughout the work, which we would like to summarize:

First, summarizing and �ltering traces is necessary to keep the output
human-readable, especially for long traces. Solutions could cover �ltering
modules or limit the depth and width of the presented evaluation tree. In
addition to the trace data, there are opportunities to accumulate data from
multiple sources (test success, program coverage, etc.) and perform program
slicing [37]. This is essential to scale to large programs. Another impor-
tant integration is with test and build frameworks. At the moment, traces
are reported on runtime exceptions, which is arguably not the best state of
a program to be in. Most of the time, software engineering utilizes tests,
and thus evaluation traces should be presented in an accessible way for test
failures. We hope that in the future, Haskell developers can write unit tests
and investigate their evaluation for anomalies, �nding potential issues before
they become problems. Lastly, we did early sketches of integrating SARIF[3]
based on tix- and mix-�les with a prototype. Transforming the information
is quite easy and can then be picked up from other popular tools such as
VSCode. Especially in light of the Haskell Language Server that also targets
VSCode, we hope that representation of coverage and evaluation in the IDE
can be a result of this work. However, such tools should not only be based on
solid data (this work), but must also meet standards and needs of developers,
drastically expanding the scope. Thus, this work focus‘ lies on the creation,
maintenance and mapping of evaluation-traces.

Automated Fault Localization Although this work covers fault localiza-
tion as a manual task, automated fault localization is a popular research topic
with often great results [1, 17]. Automated fault localization often exploits a
spectrum of coverage per test to �nd code that is suspiciously often involved
in failing tests. These approaches are based on the program coverage of strict

151



5. CSI: Haskell

languages (Java, C), and revolve around expression or statement coverage.
Directly copying these approaches might not be applicable to Haskell — due
to laziness, we might call expressions but not evaluate them. Thus, focusing
on evaluation over coverage is necessary to build a spectrum of code that
was executed, and not only touched.

Apart from adjustments necessary to reproduce existing approaches, the
evaluation information can also form the basis of novel techniques: normal
spectrums are binary, things are covered or not. With evaluation, we ex-
press the concept of full or partial evaluations and can derive a continuous
spectrum.

Optimization We are aware that this is merely a prototype implemen-
tation. We hope that producing a non-invasive method for gathering and
reporting information on evaluation resonates positively in the community,
but know that we have made some arbitrary design decisions. In this spirit,
we do not consider the implementation done but are looking forward to feed-
back on this work and towards an eventual GHC proposal.

Required trace length estimation One pain point with the current de-
sign of CSI: Haskell is that the trace length is �xed and a value must be
provided by the developer. One way to address this could be to have a more
dynamic trace, discarding entries not involved in the current evaluation and
keeping only the parts of the trace which involve values which are currently
accessible and have not been garbage collected. This would involve a much
deeper integration with the runtime system and memory management, but
could be vital for tracing long-running programs, keeping both relevant parts
of the trace but still keeping memory requirements manageable. Another
approach would be to do static analysis of the program to suggest a use-
ful length for the trace, using the call graph and structure of expressions
to approximate the required length within some order of magnitude. How-
ever, this would involve more advanced termination checking than feasible
for this paper, but would reduce the guesswork in �nding a good length. In
the interim, we suggest using a trace length of approximately 100 for smaller
programs and approximately 1000 for larger ones (as suggested by our exper-
iments on the nofib-buggy data set) and increase or decrease as necessary.

5.6 Conclusion

This paper presented an initial implementation to gather evaluation traces
and report them alongside current stack traces on runtime exceptions. The

152



5.6. Conclusion

approach utilizes boxes similar to regular HPC and only requires additional
�ags for compilation — extending from the program even into dependen-
cies. This novel data was used to improve the runtime exceptions reported
with information on the evaluation. We ran the changes on a subset of the
nofib-buggy data set, investigating at which point of the trace the faulty
location was reported. For 19 of the 21 data points, the fault was covered in a
trace of length 1000, with most locations appearing in the �rst 50 lines of the
trace. In general, valuable information is covered by the trace, but a current
limitation is the size and verbosity of the output. Most data points required
two to three times more runtime and about 50% more memory. Outliers in
performance were based on excessive amounts of thunks and a large number
of modules.

Providing evaluation traces can help to spot certain errors, especially
those related to lazy evaluation. The examples provided in this paper show
that evaluation traces help to establish the chain of events behind certain er-
rors better than a plain stack trace, as due to lazy evaluation the origin of a
problem and its occurrence can be o�set.

Acknowledgements

We thank David Sands for his input on evaluation trees and theory, and
Matthew Sottile for his e�orts on visualization and advice on the design of
CSI: Haskell. We thank the attendants of the IFL workshop for their input,
particularly the concept of evaluation asserts, as well as the attendants of the
internal Chalmers talks. This work was partially supported by the Wallen-
berg AI, Autonomous Systems and Software Program (WASP) funded by the
Knuth and Alice Wallenberg Foundation.

153





Bibliography

[1] R. Abreu, P. Zoeteweij, and A. J. Van Gemund. On the accuracy of
spectrum-based fault localization. In Testing: Academic and indus-
trial conference practice and research techniques-MUTATION (TAICPART-
MUTATION 2007), pages 89–98, Windsor, UK, 2007. IEEE, IEEE.

[2] T. O. Allwood, S. Peyton Jones, and S. Eisenbach. Finding the needle:
Stack traces for ghc. In Proceedings of the 2nd ACM SIGPLAN Sympo-
sium on Haskell, Haskell ’09, page 129–140, New York, NY, USA, 2009.
Association for Computing Machinery.

[3] P. Anderson, L. Kot, N. Gilmore, and D. Vitek. Sarif-enabled tooling to
encourage gradual technical debt reduction. In 2019 IEEE/ACM Interna-
tional Conference on Technical Debt (TechDebt), pages 71–72, Montreal,
QC, Canada, 2019. IEEE/ACM.

[4] L. Applis and A. Panichella. Hasbugs - handpicked haskell bugs. In 2023
IEEE/ACM 20th International Conference on Mining Software Repositories
(MSR), pages 223–227, Melbourne, Australia, 2023. IEEE/ACM.

[5] T. Barik, J. Smith, K. Lubick, E. Holmes, J. Feng, E. Murphy-Hill, and
C. Parnin. Do developers read compiler error messages? In 2017
IEEE/ACM 39th International Conference on Software Engineering (ICSE),
pages 575–585, Buenos Aires, Argentina, 2017. IEEE, IEEE/ACM.

[6] B. A. Becker, P. Denny, R. Pettit, D. Bouchard, D. J. Bouvier, B. Harring-
ton, A. Kamil, A. Karkare, C. McDonald, P.-M. Osera, J. L. Pearce, and
J. Prather. Compiler error messages considered unhelpful: The land-
scape of text-based programming error message research. In Proceed-
ings of the Working Group Reports on Innovation and Technology in Com-
puter Science Education, ITiCSE-WGR ’19, page 177–210, New York, NY,
USA, 2019. Association for Computing Machinery.

155



Bibliography

[7] N. Bettenburg, S. Just, A. Schröter, C. Weiss, R. Premraj, and T. Zimmer-
mann. What makes a good bug report? In Proceedings of the 16th ACM
SIGSOFT International Symposium on Foundations of Software Engineer-
ing, SIGSOFT ’08/FSE-16, page 308–318, New York, NY, USA, 2008. As-
sociation for Computing Machinery.

[8] Y.-C. Chen. A tutorial on kernel density estimation and recent advances.
Biostatistics & Epidemiology, 1(1):161–187, 2017.

[9] O. Chitil, C. Runciman, and M. Wallace. Transforming haskell for trac-
ing. In Symposium on Implementation and Application of Functional Lan-
guages, pages 165–181, Madrid, Spain, 2002. Springer, Springer.

[10] M. Faddegon and O. Chitil. Algorithmic debugging of real-world haskell
programs: deriving dependencies from the cost centre stack. ACM SIG-
PLAN Notices, 50(6):33–42, 2015.

[11] K. Ferdowsi. Towards human-centered types & type debugging. Plateau
Workshop.

[12] GHC Contributors. GHC 8.10.4 users guide, 2021.

[13] A. Gill. Debugging haskell by observing intermediate data structures.
Electron. Notes Theor. Comput. Sci., 41(1):1, 2000.

[14] A. Gill and C. Runciman. Haskell program coverage. In Proceedings
of the ACM SIGPLAN Workshop on Haskell Workshop, Haskell ’07, page
1–12, New York, NY, USA, 2007. Association for Computing Machinery.

[15] W. T. Hallahan, A. Xue, M. T. Bland, R. Jhala, and R. Piskac. Lazy coun-
terfactual symbolic execution. In Proceedings of the 40th ACM SIGPLAN
Conference on Programming Language Design and Implementation, PLDI
2019, page 411–424, New York, NY, USA, 2019. Association for Comput-
ing Machinery.

[16] A. Hamou-Lhadj and T. Lethbridge. Summarizing the content of large
traces to facilitate the understanding of the behaviour of a software sys-
tem. In 14th IEEE International Conference on Program Comprehension
(ICPC’06), pages 181–190, Athens, Greece, 2006. IEEE.

[17] T. Janssen, R. Abreu, and A. J. Van Gemund. Zoltar: A toolset for
automatic fault localization. In 2009 IEEE/ACM International Confer-
ence on Automated Software Engineering, pages 662–664, Auckland, New
Zealand, 2009. IEEE, IEEE.

156



Bibliography

[18] J. Launchbury. A natural semantics for lazy evaluation. In Proceedings
of the 20th ACM SIGPLAN-SIGACT symposium on Principles of program-
ming languages, pages 144–154, Charleston, SC, USA, 1993. ACM.

[19] S. Marlow. Hiw 2012: Why can’t i get a stack trace?, 2012.

[20] L. Naish and T. Barbour. Towards a portable lazy functional declarative
debugger. Australian Computer Science Communications, 18:401–408,
1996.

[21] H. Nilsson and J. Sparud. The evaluation dependence tree as a basis for
lazy functional debugging. Automated software engineering, 4:121–150,
1997.

[22] K. Noda, T. Kobayashi, T. Toda, and N. Atsumi. Identifying core objects
for trace summarization using reference relations and access analysis.
In 2017 IEEE 41st Annual Computer Software and Applications Conference
(COMPSAC), volume 1, pages 13–22, Turin, Italy, 2017. IEEE.

[23] W. Partain. The no�b benchmark suite of haskell programs. In Func-
tional Programming, Glasgow 1992: Proceedings of the 1992 Glasgow
Workshop on Functional Programming, Ayr, Scotland, 6–8 July 1992,
pages 195–202, Ayr, Scotland, 1993. Springer, Springer.

[24] J. Prather, R. Pettit, K. McMurry, A. Peters, J. Homer, and M. Cohen.
Metacognitive di�culties faced by novice programmers in automated
assessment tools. In Proceedings of the 2018 ACM Conference on Inter-
national Computing Education Research, pages 41–50, Espoo, Finland,
2018. ACM.

[25] J. Prather, R. Pettit, K. H. McMurry, A. Peters, J. Homer, N. Simone, and
M. Cohen. On novices’ interaction with compiler error messages: A
human factors approach. In Proceedings of the 2017 ACM Conference on
International Computing Education Research, pages 74–82, Tacoma, WA,
USA, 2017. ACM.

[26] M. M. Rahman, S. Yeasmin, and C. K. Roy. Towards a context-aware
ide-based meta search engine for recommendation about programming
errors and exceptions. In 2014 Software Evolution Week - IEEE Confer-
ence on Software Maintenance, Reengineering, and Reverse Engineering
(CSMR-WCRE), pages 194–203, Antwerp, Belgium, 2014. IEEE.

[27] Ranjit Jhala. LiquidHaskell is a GHC Plugin, 2020.

157



Bibliography

[28] P. C. Rigby and S. Thompson. Study of novice programmers using
eclipse and gild. In Proceedings of the 2005 OOPSLAWorkshop on Eclipse
Technology EXchange, eclipse ’05, page 105–109, New York, NY, USA,
2005. Association for Computing Machinery.

[29] A. Schröter, N. Bettenburg, and R. Premraj. Do stack traces help devel-
opers �x bugs? In 2010 7th IEEE working conference on mining software
repositories (MSR 2010), pages 118–121, Cape Town, South Africa, 2010.
IEEE, IEEE.

[30] P. Sestoft. Deriving a lazy abstract machine. Journal of Functional Pro-
gramming, 7(3):231–264, 1997.

[31] D. Sha�er, W. Doube, and J. Tuovinen. Applying cognitive load theory
to computer science education. In PPIG, volume 1, pages 333–346, Keele,
UK, 2003. Citeseer, M. Petre & D. Budgen (Eds.).

[32] J. Silva. The buggy benchmarks collection, 2007. Josep Silva self-
published on his website / university.

[33] V. J. Traver. On compiler error messages: What they say and what they
mean. Adv. in Hum.-Comp. Int., 2010, jan 2010.

[34] M. Vassena, J. Breitner, and A. Russo. Securing concurrent lazy pro-
grams against information leakage. In 2017 IEEE 30th Computer Security
Foundations Symposium (CSF), pages 37–52, Santa Barbara, CA, USA,
2017. IEEE.

[35] N. Vazou, E. L. Seidel, R. Jhala, D. Vytiniotis, and S. Peyton-Jones. Re-
�nement types for haskell. In Proceedings of the 19th ACM SIGPLAN in-
ternational conference on Functional programming, pages 269–282, 2014.

[36] M. Wallace, O. Chitil, T. Brehm, and C. Runciman. Multiple-view tracing
for haskell: a new hat. In R. Hinze, editor, 2001 ACM SIGPLAN Haskell
Workshop, Firenze, Italy, September 2001. Universiteit Utrecht UU-CS-
2001-23. Final proceedings to appear in ENTCS 59(2).

[37] M. Weiser. Program slicing. IEEE Transactions on software engineering,
1(4):352–357, 1984.

[38] J. Wrenn and S. Krishnamurthi. Error messages are classi�ers: A pro-
cess to design and evaluate error messages. In Proceedings of the 2017
ACM SIGPLAN International Symposium on New Ideas, New Paradigms,
and Re�ections on Programming and Software, Onward! 2017, page

158



Bibliography

134–147, New York, NY, USA, 2017. Association for Computing Ma-
chinery.

[39] Z. Zhang, W. K. Chan, T. H. Tse, B. Jiang, and X. Wang. Capturing
propagation of infected program states. ESEC/FSE ’09, page 43–52, New
York, NY, USA, 2009. Association for Computing Machinery.

159





6
Functional Spectrums – Explor-

ing Spectrum–Based Fault Lo-

calization in Functional Pro-

gramming

Leonhard Applis, Ma�hías Páll Gissurarson, and

Annibale Panichella

Manuscript

A
bstract. Fault localization plays an important role in debugging,

one technique thereof is spectrum-based fault localization, which
uses tests and program coverage to produce a spectrum of locations in-
volved in passing and failing tests. Despite its extensive application in
Java, this technique remains underexplored within functional program-
ming languages. This gap underscores a critical challenge: adapting
spectrum-based fault localization to accommodate the unique charac-
teristics of functional paradigms. Addressing this challenge, we evolve
current spectrum-based approaches by extending spectrums with types
and AST structure. We introduce a rule-based system tailored to cap-
ture more complex attributes of spectrums. Spectrums are generated
by adding an extra pass to the Tasty test framework, which allows easy
adoption and reproducability. Through an empirical study involving
11 real-world programs, we investigate the generated spectrums along
with the e�ectiveness of the rule-based system and their correlation to
faults. For most bugs, conventional spectrum-based formulas perform
promisingly well in a functional context and are only outperformed by
classi�ers that incorporate these formulas.





6.1 Introduction

Functional programming has earned a reputation for being at the forefront
of type and programming language research, but we believe it can also be a
champion of tooling and software engineering practices.

It remains open what tooling functional programmers really want, but
tooling they need. Haskell is known for innovating in more niche features
like software transactional memory and techniques like property-based test-
ing. It has innovative tools like the Hoogle search engine, but we believe we
can innovate further and introduce tools that would be harder to develop for
other paradigms.

Tools are quite important to software developlent. According to modern
developer surveys, approximately 50% of development is spent debugging,
half of which is spent �xing bugs [3]. An important part of the debugging
process is fault localization, i.e. determining which part of the program is at
fault, which can be assisted by specialized tools. This challenge spans most
software paradigms, including functional programming [10, 17].

One way to assist the fault localization process is to introduce automated
tools [11, 24], for example, spectrum-based fault localization (SBFL). A pro-
gram spectrum is a matrix where rows represent test results and columns
represent code locations. Each entry indicates whether that location was in-
volved in the test or not, with an additional column that indicates whether
the test passed or failed. A program spectrum is created by running indi-
vidual tests and collecting program coverage [27]; thus capturing di�erent
aspects of the program by branching over the test suite. Program spectrums
have been successfully applied in imperative languages, based on the premise
that by comparing elements involved in failing tests and those involved in
passing tests, we can deduce which location is at fault. However, they have
yet to become established in functional communities.

6.1.1 Example

Consider the function and properties in �gure 6.1.

163



6. Functional Spectrums for Fault Localization

1 foldInt :: (Int -> Int -> Int) -> Int -> [Int] -> Int
2 foldInt _ z [] = 0
3 foldInt f z (x:xs) = (foldInt f z xs) `f` x
4

5 prop_sum, prop_prod, prop_diff :: [Int] -> Bool
6 prop_sum xs = foldInt (+) xs 0 == sum xs
7 prop_prod xs = foldInt (*) xs 1 == product xs
8 prop_diff xs = foldInt (-) xs 0 == negate (sum xs)

Figure 6.1: A buggy program and associated properties
Table 6.1: A spectrum for the code in �gure 6.1

name type result 2:18 3:31 3:35-36 3:22-37 3:43 3:22-43 2:1-3:43
type Int Int→Int→Int [Int] Int Int Int
identi�er f xs x

sum QC True 100 2162 2255 2255 2255 2255 2355
prod QC False 1 0 0 0 0 0 1
di� QC True 100 2224 2319 2319 2319 2319 2419

Here, we intended to implement a fold, but made a mistake: we acciden-
tally wrote 0 instead of z in line 2. The prop_sum and prop_diff touch all
locations in the spectrum, but prop_prod only touches the base case, since
QuickCheck’s initial test is always [].

Running the properties for the program in �gure 6.1, produces the spec-
trum in table 6.1. A standard spectrum consists of only the tests, whether
they pass or fail, and the locations involved in each test. In this paper how-
ever, we produce augmented spectrums. These augmented spectrums also
include the types of expressions and tests involved, the name of the identi-
�er, and the number of evaluations of this location in the test. The notation
2:18 represents line 2 column 18, and - indicates a range of characters.

Tarantula:

𝑛𝑒𝑓
𝑛𝑒𝑓 +𝑛𝑡𝑓

𝑛𝑒𝑓
𝑛𝑒𝑓 +𝑛𝑡𝑓

+
𝑛𝑒𝑝

𝑛𝑒𝑝+𝑛𝑡𝑝

Ochiai:

𝑛𝑒𝑓√︁
(𝑛𝑒𝑓 +𝑛𝑡𝑓 )(𝑛𝑒𝑓 +𝑛𝑒𝑝 )

Figure 6.2: Standard SBFL formulas. 𝑛𝑒𝑓 and 𝑛𝑒𝑝 are the number of times the
expression 𝑒 is involved in a failing or passing test respectivley,
while 𝑛𝑡𝑓 and 𝑛𝑡𝑝 is how many total failing and passing tests
there were.

Using the formulas detailed in �gure 6.2 on the spectrum, we can score
the locations as detailed in �gure 6.3. Here, the most suspect location is

164



6.1. Introduction

Table 6.2: A spectrum for the code in �gure 6.1, with a �xed based case but
f x (foldInt f z xs) in line 3

name type result 2:18 3:24 3:35 3:37 3:39-40 3:26-41 3:22-41 2:1-3:41
type Int Int Int→Int→Int Int [Int] Int Int
identi�er z x f z xs

sum QC True 100 2654 2560 2654 2654 2654 2654 2754
prod QC True 100 2604 2509 2604 2604 2604 2604 2704
di� QC False 7 4 0 4 4 4 4 11

indeed the underlined 0 in 2:18: it is involved in more failing tests than
other locations, apart from the de�nition of the foldInt that spans lines 2
and 3.

Location Ochiai Tarantula

2:18 0.577 0.5
2:1-3:43 0.577 0.5

3:31 0 0
Figure 6.3: Top 3 suspiciousness scores from classic SBFL formulas, with the

bug location in bold.

Although replacing the de�nition of foldInt is certainly an option, the
type information in the augmented spectrum allows us to distinguish expres-
sions from locations. Using the type information to deduce that 2:18 is an
expression, we can break the tie and correctly point to 0 as the most suspi-
cious expression in the spectrum. Still, its not often as clear which location is
at fault. If we got the base case correct but had written f x (foldInt f z

xs) in line 3, we would have the traditional foldr instead of a �ipped foldr

as presented here. Running the properties again, this accidental foldr pro-

1 foldInt :: (Int -> Int -> Int) -> Int -> [Int] -> Int
2 foldInt _ z [] = z
3 foldInt f z (x:xs) = f x (foldInt f z xs)

Figure 6.4: The program from �gure 6.1, slightly modi�ed.

duces the spectrum in table 6.2. Here, it is not as clear which location is
at fault: while prop_sum and prop_prod pass, now prop_diff fails and
touches all except f in foldInt f z xs in line 3, since QuickCheck tests
the empty list and then singleton lists. This exonerates the base case, but
does not help us to distinguish the remaining locations. As seen in �gure 6.5,
formulas fall short in this case.

165



6. Functional Spectrums for Fault Localization

Location Ochiai Tarantula

2:18 0.577 0.5
3:24 0.577 0.5
3:37 0.577 0.5

3:39-40 0.577 0.5
3:26-41 0.577 0.5
3:22-41 0.577 0.5
2:1-3:41 0.577 0.5

3:35 0.0 0.0
Figure 6.5: Classic SBFL formula scores (bug location in bold).

While this would be a challenge to traditional SBFL formulas, our rule-
based approach allows us to distinguish these cases, by inspecting the AST
structure, types, and identi�ers. The rule-based approach is detailed further
in section 6.3.2, but for this example, we could proceed as follows: we can
�lter out the non-expression by limiting ourselves to only those locations
that have a type. In this case, we see that the columns for the remaining
faulty expressions look the same, except for 2:18. We then sort by the AST-
based rTFailFreqDiffParent rule (see section 6.3.2), which assigns a value
of 0.71 to z in 2:18, 2.29 to f x (foldInt f z xs) in 3:22-41, and 3 to all
the others: most locations are evaluated alongside their parent, but 3:22-41
and 2:18 are not always evaluated with their parent (2:1-3:41). As the test
is a property and properties test the base case �rst, a failure for the empty list
would result in fewer evaluations, similar to what we saw in table 6.1. With
that, we can rank 3:22-41 as the most suspicious. This motivates us to do a
detailed analysis to shed light on which attributes are important.

6.1.2 Contributions

In this paper, we apply spectrums and existing suspiciousness scoring algo-
rithms to Haskell and enrich it with unique, novel features: We use Haskell
Program Coverage (HPC) instrumentation to determine whether an expres-
sion was touched during a test, but also to extract how often the location was
evaluated. We note the test-framework (QuickCheck, Hunit, etc.) for later
processing, and capture the type, constraints, and identi�ers of locations that
correspond to expressions within the spectrum, forming a richer spectrum
than existing literature. We aim to cover many Haskell-speci�c attributes of
test-cases and programs by these changes.

We provide the tool for spectrum generation as an ingredient1 for the
1currently anonymized for peer-review

166



6.1. Introduction

popular Tasty test framework.
To explore the spectras and generate new �ndings, we implement a rules-

based approach to merge novel features and existing approaches. The targets
for rules are (1) test attributes (test types, executions, frequency), (2) program
attributes (AST structure), (3) existing SBFL formulas and (4) type-based com-
plexity measures (constraints, arity, order).

The overall goal is to see whether the additional rules beyond existing
literature improve fault localization for Haskell programs. To rank the loca-
tions for their suspiciousness, we concatenate the rule results into a vector
and apply simple machine learning (ML) algorithms such as linear regres-
sion, decision trees, and (shallow) neural networks. We chose simple predic-
tors to maintain explainability and ease of comparison. For instance, deci-
sion trees provide a transparent view into the rules most e�ective at isolating
speci�c bugs, while regression models capture the correlations between rule
attributes and the presence of faults. They directly correlate with di�erent
features and form an insight themselves.

Rather than striving for improved outcomes by selectively interpreting
metrics or meta-tuning classi�ers, we o�er insights and trends encompassing
both successful and unsuccessful techniques. We provide an easy-to-adapt
tool for practitioners and researchers to extract rich spectra. Popular open-
source projects are used to verify the feasibility of spectrum extraction. Real-
world bugs are analyzed in detail by formulating rules that capture spectrum
attributes. Known SBFL formulas are applied and investigated for suitability
and some simple ML algorithms are tested with rule-based vectors.

The total overview of the pipeline is seen in Figure 6.6. The novel ele-
ments and contributions are marked as bright-blue.

Research Questions We �rst investigate the spectrums and look what at-
tributes distinguish them from their non-faulty counterparts.

RQ1.A: Spectrums of functional Programs

What attributes signi�cantly di�erentiate faulty and non-faulty expres-
sions within spectrums?

Before adaptations, it is worth looking at how existing research performs
for typed functional programs. We thus apply common spectrum-based for-
mulas from literature, summarized in table 6.7 in the appendix.

167



6. Functional Spectrums for Fault Localization

Figure 6.6: Overview of the fault localization Pipeline

RQ1.B: SBFL Formulas for functional Programs

How well do existing SBFL formulas perform for the given Haskell
dataset?

We capture certain attributes of spectrums and their expressions through
rules. After implementation, it remains to see if they are applicable. RQ1.C
investigates the characteristics of the rules when applied to the spectrum:

RQ1.C: Applicability of Spectrum-Based Rules

What are the most prominent rules triggered by faulty expressions?

As a �nal subject of investigating the underlying programs, we analyze
correlations between the rules and formulas.

RQ1.D: Correlation of Spectrum-Rules

Are there signi�cant correlations between the rules for faulty expres-
sions?

Based on the original data investigation and rules, we apply a set of sim-
ple classi�ers and regressors to the data. Due to the exploratory nature, we
focus on explainable models and investigate their attributes after �tting.

168



6.2. Background

RQ2.A: Attributes of simple SBFL Models

When �tted to a data point, what rules were the most important for the
di�erent models? Are there reoccurring patterns and weights?

A common use of a model is to diagnose faults in (unseen) data, which
makes debugging more e�ective. With RQ2.B we want to see how well the
models perform on the programs that they are not �tted for, and if there are
recurring patterns, successes, and challenges among them:

RQ2.B: Generalization of SBFL Models

How well do the �tted models perform on programs and faults outside
of their training data?

In summary, this research aims to a analyze a sample of real–world
faults and b explore directions for predictors that perform better than ex-
isting formulas.

6.2 Background

Spectrum-based Fault Localization Spectrum-based fault localization (SBFL)
was developed as a technique to cover well-testable issues related to the year
2000 problem [27], and is considered one of the most prominent due to its
e�ciency and e�ectiveness [29]. After de�ning a failing test that triggers
the Y2K problem of an application, the program tests were executed in order,
and their coverage was recorded. Under the assumption that there are (pass-
ing) tests covering expected behavior, the issue must originate in statements
covered by failing tests without being in passing tests.

The Y2K problem consists of straightforward �xes, and thus it is di�cult
to transfer the techniques developed there to more complex issues. Never-
theless, the idea of collecting per-test coverage to narrow down suspicious
statements formed the core of modern SBFL: from the initial concept of inter-
section, many techniques emerged that use formulas [11, 12, 16, 32] to assign
suspiciousness scores to di�erent parts of the program. While details di�er,
all formulas take into account how often a given statement was touched by
failing and passing tests in addition to global attributes of the spectrum (e.g.,
total number of failing tests). The result of the formulas is used to produce a
ranking of statements and report the most suspicious locations.

An important piece of work from which we draw is Naish et al. [22]
which discusses the mathematical attributes of spectrum-based formulas. In
addition to introducing two new formulas, they prove that some formulas

169



6. Functional Spectrums for Fault Localization

must result in the same ranking (equivalence classes). Within this work, we
aim to implement at least one formula from each identi�ed equivalence class.

Other Fault Localization e�orts for functional programming Fault
localization in a functional setting has been explored in Liquid Haskell [30]
using re�nement types, a type system augmented with logical predicates.
They collect constraints and localize faults by mapping a minimal set of
atomic unsatis�able type constraints to likely bug locations. The work relies
on a more powerful type system than Haskell has, namely liquid types, which
localize (and repair) errors on the type level. The Liquid Haskell approach
requires precise modeling of the expected system-behavior at the type level,
which often means giving up type-inference In this work, we target programs
with existing test suites, and enable developers to get more out of previous
testing e�orts. Using liquid types, a form of test generation can form supple-
mentary work similar to test generation e�orts in program repair.

6.3 Implementation & Experiment Setup

6.3.1 Spectrum Generation

We introduce a tasty-spectrum package which adds an ingredient to the
Tasty test framework that captures coverage when tests are run and gener-
ates a spectrum. Tasty-Ingredients are a modular way to implement plugins
for Tasty to add additional behavior around tests such as re-running, time-
outs, or, in this case, data extraction.

To generate spectrums, we use the instrumentation provided by Haskell
Program Coverage (HPC) and programs compiled with the -fhpc �ag. This
generates .mix �les that allow HPC to connect the indices it produces to the
source locations in the modules. Our implementation includes a GHC source
plugin, which integrates with the compiler and extracts type and identi�er
information from modules during compilation to generate .types �les.

GHC Source Plugins GHC allows users to de�ne source plugins, which
are run at the end of various stages of compilation, including parsing, type
checking, and renaming. These plugins allow the user to modify and interact
with the source code after each stage. In the tasty-spectrum package, we
de�ne a plugin that operates at the end of the type checking stage, where we
traverse the type checked expressions, and note their types in the .types

�le. The .types �les are saved alongside the .mix �les and later combined
with the .mix information during spectrum generation.

170



6.3. Implementation & Experiment Setup

Haskell Program Coverage (HPC) HPC instrumentation is integrated
into GHC, and is based on maintaining an array that counts executions for
each source location (which corresponds to expressions) in the module dur-
ing runtime. Whenever an expression is evaluated, this triggers a “bump”
in the array, allowing HPC to track the number of times each expression
was evaluated in the module. This array allows access, manipulation and
re-initialization at runtime.

Spectrums are generated by running the test suite. As the code has been
compiled with the -fhpc �ag, the RTS will keep the Tix array in memory.
Before running each test, we reset the HPC state. After each test, we read
the current state of HPC, and track which expressions were evaluated.

After running all tests, the Tix array for each test is combined with the
module structure from the Mix �les and the type/identi�er information from
the .types �les to produce a type-augmented spectrum as a .csv �le. To
compress the data, we include only locations that are involved in the tests by
excluding those that have zero evaluations across the test suite.

6.3.2 Rules

Fault localization commonly ranks locations based on their suspiciousness.
To achieve this, the information in the spectrum is quanti�ed and turned
into a score. This is traditionally done using formulas that depend on the
number of times a location is involved in passing or failing tests, 𝑛𝑒𝑝 and 𝑛𝑒𝑓
respectively, and the number of total passing and failing tests, 𝑛𝑡𝑝 and 𝑛𝑡𝑓 .
In our analysis we include these classic formulas, but also quantify other
elements of the augmented spectrum, aiming to �nd correlations with faults.

• Test-type count the number of tests, passing or failing, that this location
is involved in.

• SBFL-Formulas apply existing formulas from previous literature; the
rule output is the calculated value of the formula.

• AST structure-based rules use information based on the distance from
a failing location or whether a parent or sibling was executed often.

• Type-based rules are based on analysis of the available types and con-
straints of a location.

• Meta-rules operate on the results of the previous, per-module, rules and
supplement the data with further analysis. These include the quantile
rules and the rules that count how often types, component types, and
identi�ers appear in failing tests.

171



6. Functional Spectrums for Fault Localization

Table 6.4 provides an overview of the type-based rules.
We want to further motivate some of the rules presented in table 6.7. One

general notion is that properties are stronger than regular unit tests, as they
cover a wider range of input values and have logic beyond an assert. It makes
sense to rate an expression that is in many passing properties as less suspi-
cious. In a similar, less algorithmic viewpoint, golden tests, i.e. tests that use
output comparison, are often written after users report a bug. Thus, it could
make sense to rate golden test failures as more suspicious, as they often cap-
ture failing behavior, contrary to properties that often test positive program
paths. Taking this into account, no one test is better than the others - but there
might be patterns that we only �nd when inspecting them separately.
Table 6.3: Rules based on AST-based behavior

rASTLeaf Counts the distance of this node to
the nearest leaf.

rFailUniqueBranch Times this location is touched by
failing test that touches none of its
sibling expressions.

rFailFreqDi�Parent Ratio of evaluations compared to
parent-evaluations.

rDistToFailure Distance to a location touched in a
failing test, by counting links to a
common parent.

AST rules (seen in table 6.3) are based on existing research on active and
algorithmic debugging [4, 8, 18]. They aim to capture di�erences in exe-
cutions relative to parents and neighbors and re�ect control-structures and
program �ow.

With the group of type rules in table 6.4, we aim to proxy the complex-
ity of an expression and its context. We expect longer types to indicate a
more complex process; especially higher-order functions are a unique case
of complexity that is well represented at the type level. rNumSubTypeFails
aims to connect types seen in failing locations with seemingly un-connected
locations — the rationale being that concepts in the program are expressed as
types, and there can be a failure in the concept. rTypeArity and rTypePrimitives
allow us to identify correlations of faults with parts of a type and form basis
of analysis, e.g. if faults occur in basic elements or complex compositions.

Unlike SBFL formulas, our novel rules are not intended as ranking algo-
rithms, but rather as intermediate results for analysis, model features, and
tie breaking (e.g. in table 6.2).

172



6.3. Implementation & Experiment Setup

Table 6.4: Rules based on the expressions type
rTypeArity &
rTypeConstraints

Number of arguments and constraints
the function has.

rTypeArrows Number of arrows (->) in the type

rTypeFunArgs Numbers of parentheses in the type to
quantify how many function arguments
there are, and in turn whether it is a
higher-order function or not.

rTypeOrder Counts the number of type applications
in the type, such as Maybe a or [[a]]

rTypePrimitives Number of primitives, i.e. String or Int.

rTypeSubTypes Counts the number of types in the type,
i.e., unfolds all constructors and applica-
tions.

rTypeLength Number of Characters of the Type, when
represented as String.

rNumSubTypeFails Number of times types which appear in
this type are involved in a location in-
volved in a failing test.

173



6. Functional Spectrums for Fault Localization

6.3.3 Data

We draw data from two Haskell fault datasets, HasBugs [1] and HaFla [14].
Both datasets provide a similar granularity of faults originating from projects
with known faults (based on issues and PRs) whose fault-�xing commits in-
clude a test. These tests were extracted to produce a faulty but tested version
with a failing test suite. We determine faulty expressions as all expressions
that are completely within faulty lines, extracted from the git-di�erence.

A subset of the data was chosen to produce the spectrums that met the
required versions of Cabal, tasty (>v1.0), and GHC (>= 8.6). Other limitations
excluded projects like Purescript (many of the tests run against compiled
Javascript) or Cabal (all bug-asserting tests are package-level tests outside
the tasty test suite). This results in a total of 11 programs2 from 3 projects -
Pandoc, Duckling and an HLS-plugin. An overview of the data points used
is presented in table 6.5.

Pandoc is a document converter and, outside of language-speci�c tool-
ing (GHC, Cabal, HLS, etc.), the biggest Haskell project with over 50k lines
of code. The general �ow of conversion consists of three steps: a reader, an
internal representation, and a writer. Most bug reports and issues are based
on user-perceived misbehavior, which is commonly captured with a unit or
golden test.

HLS is a joint community e�ort of Haskellers to provide the backbone of
a modern Haskell IDE. Most of it is centered on providing a language server
in typescript style for the popular Visual Studio Code. Apart from a base
framework, many functions are provided as plugins to cover linting, type
suggestions, suggested imports, and other features.

Duckling is an open-source Facebook project that extracts structured
entities (times, dates, weights, etc.) from texts. The general business logic
consists of regex-based rules that are applied in a �ne-to-coarse fashion The
test suite consists of a domain-speci�c corpus with examples and broad tests
that run all examples within a corpus. Generally, the corpus is structured per
module, which is why the duckling data points only show one test failure,
despite multiple examples being added to a corpus.

ComparisonwithDefects4J - Comparing the spectra between paradigms
is challenging, but to approximate, we consult some data from Defects4J [13].
We draw our data from a public repository shared by René Just3 that provides
statistics from applying GZoltar [28] to a subset of 395 bugs from Defects4J.

The Defects4J bugs inspected have a mean Source lines of code(SLOC)[23]4

29 from HasBugs, two from HaFla
3https://bitbucket.org/rjust/fault-localization-data/src/master/
4SLOC are lines of code, after removing whitespace and comments.

174



6.3. Implementation & Experiment Setup

of 57.7k and a median of 62.5k. The mean number of tests in Defects4J is 1439,
with a median of 202, with an average of 2 failing tests. Under the assump-
tion that most of the SLOCs represent line-level statements, the resulting
spectrums will have a comparable number of elements. The we approximate
faulty SLOC for Defects4J as an average of 2.56, based on the lines removed
by the patch. In conclusion, the programs and bugs used in this work are
comparable in size to Defects4J.

6.3.4 Experimental Setup

Based on the fault �xing commits of a data point, we revert the source code
patch while keeping the changes to the test code, observing a test failure
during cabal test. At this stage, we also distinguish noisy test failures as
mentioned in table 6.5, marking tests that fail before and after the changes as
noisy. As the next step, the cabal �le is altered to include spectrum generation
and coverage, following the description in section 6.3.1 These result �les form
the basis of a data analysis, done in Python.

RQ1 is answered by investigating the results of their triggered rules.
Many of the spectrum attributes are directly captured in rules (e.g., rTFail
corresponds to was touched by a failing test), and thus facilitate the analysis
of distributions and proportions.

The primary metric considered for ranking the expressions is the Top-X-
metric [9]. Within TopX, the recommended elements are sorted by their sus-
piciousness, and the correct classi�cations (truly faulty expressions) within
the �rst X are counted. For this work, we considered the Top10, Top50 and
Top100, following previous literature.

Another common metric is EXAM [26], assuming that the user follows
every recommendation in order until the real fault(s) are �xed. The index
of the �rst correct fault is used to calculate the ratio of the inspected (total)
program, with the exam score expressing how many locations can be skipped
when following the recommendations? The EXAM score is proportional to
the mean reciprocal rank, another metric commonly reported for FL. For this
work, we discarded MRR and EXAM, as we work with di�erent granularity
due to our expression level spectrum: when introduced in 2003, EXAM was
targeting block-level spectrums, but the sheer di�erence in the quantity of
mostly (benign) expressions would draw a highly bene�cial picture of our
approach. Therefore, for ranking evaluations, we focus on TopX metrics [33].

RQ2 is investigated by training classi�ers and regressors on the result
files. Namely we implemented decision trees, random forests, linear-
& logistic regression and Multilayer Regressors from SciKit [25].

175



6. Functional Spectrums for Fault Localization

Table 6.5: Overview of the used data points
Data
Point

Issue Faulty
LOC

Faulty
Ex-
pres-
sions

Total
Ex-
pres-
sions

Failing
Tests

Noisy
Test-
Failures

Total
Tests

pandoc-
3be256efb

Wrong application of
’Big Note’ highlighting
when converting to
LATEX. Reordering
necessary.

1 6 88k 6 0 3254

pandoc-4 Failure converting
combined code and
bold text to LATEX.

3 12 91k 1 1 3056

pandoc-5 Misinterpretation of
code blocks when
converting to ROFF
MS. Requires escaping.

1 8 61k 2 6 2400

pandoc-6 Misconverting code
blocks starting with (1)
into enumerations.

5 39 59k 10 13 2365

pandoc-7 Empty multi-cells not
picked up when read-
ing LATEX.

27 72 61k 3 7 2415

hls-2 Issue accounting for
relative location "./"
instead of expected "."

2 15 269 1 0 6

hls-
afac9b18

HLS-Plugins can re-
format code, Stylish
Haskell was removing
the last line of �les
regardless of whether
they had content.

1 17 122 2 0 13

duckling
-
ea8a4f6d

Wrong pronomina for
German million. Regex
adjustment.

1 5 288k 1 0 364

duckling
-
4cfe88ea

Missing combined du-
rations cases (e.g "2
hours and 20 minutes")

18 4 260k 1 1 342

duckling
-
28ddc3bf

Wrong parsing of
1.000,00 for Dutch

1 5 299k 1 0 346

duckling
-
328e59eb

Missing cases for
weights (and combi-
nators) in Portuguese
language.

19 26 277k 1 1 360

176



6.4. Results

At last, we considered a genetic algorithm using Pymoo [2] for an evolution-
ary search of regressor weights.

To separate the e�ects of the new rules from existing rules, we assert a
total of four con�gurations: all, classic (existing sb� formulas), original (only
novel rules added by this work) and cherries (a handpicked set of rules and
formulas). To account for di�erent value ranges, we re-run all experiments
with min-max-scaling, mapping all features to values between 0 and 1. In
the remainder of the paper, this is represented by the terms scaled (min-max
scaling applied) and unscaled.

Fitting the binary classi�ers (decision tree, random forest, logistic regres-
sion) targets locations to be faulty or not faulty. Regressors are trained to
assign faulty locations with a suspiciousness of 1 while other locations have
a suspiciousness of 0. In the remainder of the paper models are named af-
ter their training data, e.g. Pandoc-3 model. For persisting trends of a single
project, pandoc models refers to all models based on pandoc programs.

GA-based regression GAs utilize a custom �tness function to optimize
the ranking of the �rst reported faulty locations, e�ectively optimizing on
TopX. For GAs, we set the population to 200 individuals and use Latin Hy-
percube Sampling [19] to generate the initial population. The population
is then evolved trough subsequent generations, by using binary tournament
selection [20], for selecting the solutions (regression weights) for reproduc-
tion based on their �tness. Simulated Binary Crossover [7] SBX is used to
recombine the selected solutions, and polynomial mutation [6] (PM) is used
to introduce diversity to the population. We opt for these genetic operators
and their recommended parameters values (i.e., SBX with index 𝜂𝑐 = 30, PM
with index 𝜂𝑚 = 20 and probability 𝑝𝑚 = 1/𝑛, with 𝑛 being the number of
regression weights), as they are known to be e�ective in solving continuous
optimization problems [6]. GAs are set to run for 2000 generations or ter-
minate early if no improvement in the �tness function is observed for 100
generations. The solution weights in the �nal population with the best value
of the �tness function is used as the �nal GA-based regression.

Regressors are evaluated on the resulting TopX, while for classi�ers, true
and false positives are evaluated. A global seed was used to account for in-
herent randomness.

6.4 Results

Attributes of Spectrums The created spectrums range in size from 25Kb
(HLS), 200 MB (duckling) to up to 500 MB (Pandoc). Spectrum generation is

177



6. Functional Spectrums for Fault Localization

not a costly addition to the runtime of tests, but compilation time of projects
is longer as the -fhpc �ag is required.

Table 6.8 groups the expressions into those touched by failing tests and
those that are not. This allows for shrinking the spectrum, assuming that
statements without failing tests are innocent. When organized in this way, we
see that duckling-4cfe88ea, duckling-ea8a4f6d, duckling-1dac46a8
and pandoc-4 do not have faults covered by the tests.

The authors double-checked the test suite, and for duckling, the correct
(and expected) corpus tests were failing. We suspect that the tests do not run
against the original source, but generated code. The generated code is also
faulty but is not the origin of the issue, as �xed in the commit. Some of the
duckling data points, e.g. duckling-328e59eb have faults covered by failing
tests. The �x for duckling-328e59eb is more than the adjustment of a regex,
and the changes to the structure are successfully tested and represented in
the spectrum. For pandoc-4 there are faulty locations on a reader that need
changes in the data format. The relevant golden test runs with a compiled
binary of pandoc (unlike the other pandoc data points) that is invoked by
tasty, which is not collected in project coverage. Thus, we have a failing test
suite, but the touched expressions originate only from noisy test failures.

The existence of faults that are not directly covered poses a challenge
for this work and a novel aspect of fault localization. Stemming from real
projects, the tests are realistic and express community e�orts. Although tests
cover bugs semantically, it does not cover the faulty code and require new
spectrum techniques. Due to common usage of Haskell for domain-speci�c
languages, parsers, and code generation, we expect these types of faults to
be more common in functional paradigms than in other languages.

On average, 63.7% of faults are in AST leaves, while 50.5% of expres-
sions are leaves. For duckling, most changes were adjustments to a regex
(AST-Leaf) and their wrappers (non-leaf) or required the introduction of a
new rule. This results in even distribution of faults in leaves and non-leaves
for duckling. Within Pandoc, many faults revolved around combinators and
parsers, which involve many higher-order functions. In particular, the pro-
gram �ow in a parser monad produces many non-leaf faulty locations. The
combinators (<$>, <|>, etc.) and the patterns (many1Char, noneOf, etc.) are
all non-leaf nodes as they require arguments. Due to this structure, the faults
in the pandoc programs are proportionally more in non-leaves than leaves.

Most faulty expressions are typed. Usually, one or two faulty locations
are untyped, which is a special case of ambiguity that occurs in typing: these
are not expressions, but rather bindings, e.g. x = a. Here, x and a will have
the same type, but the binding x = a does not have a type.

178



6.4. Results

We see no striking trends in the types of faulty expressions; the most
common types are primitives such as Text or UInt, which are also common
in non-faulty expressions. The only exceptional types are monadic parsers in
pandoc-6 and pandoc-7. The use of monads and the higher-order operators
involved is also a reason for the high number of faulty expressions for these
data points, as they imply an increased number of function applications per
line of code.

Although most expressions are typed, only few represent an identi�er.
Less than half of the faulty expressions correspond to identi�ers, and 4 data
points do not have any faulty expressions that correspond to identi�ers. The
identi�ers encountered match the project vocabulary (e.g., parseMultiCell
in pandoc-7) with no trend of shorter identi�ers being more faulty. This
diverges from existing research’s focus on o�-by-one errors [21] or issues in
predicates [15], which also focus on elements with identi�ers.

RQ1.A: Attributes of Spectrums

3 Data points (pandoc-4,duckling-4cfe88ea & duckling-ea8a4f6d)
do not have faulty expressions covered by a failing test, due to code-
generation (duckling) and the test-suite utilizing binaries (pandoc).
Two-thirds of expressions are AST-leaves, whereas about half the faults
are AST-leaves. Almost all faulty expressions have a type, but identi�ers
are rare.

Existing SBFL-Formulas Table 6.6 shows the Top50 results when apply-
ing existing formulas and sorting the statements by their resulting score. We
focus on Top50, as Top10 struggled with expression-level granularity and
Top100 showed the same trends at a bigger scale. For readability, we reduced
table 6.6 to the best performing formulas.

Ochiai is the formula that performs best with our data, followed by DStar.
Ochiai is the only formula with a median Top50 above zero, implying that the
other formulas have not found faults for more than half of the data points. We
expect that Ochiai performs best as it applies the square root in its denomi-
nator, which scales better for large number of expressions and tests. Ochiai,
DStar, and Optimal also do not use 𝑛𝑡𝑝 (number of total passing tests), which
is relatively high for most programs and disproportionate to the number of
failing tests.

The best average scores are achieved by the strong performance of some
formulas on pandoc-6 and HLS-afac9b18. Our guess is that pandoc-6 has
a large number of failing tests that exactly distinguish the faulty from the
correct cases. HLS-afac9b18 has a much more favorable ratio of faulty ex-

179



6. Functional Spectrums for Fault Localization

pressions to expressions, and the newly added tests primarily invoke the af-
fected faulty statements. Thus, these two data points play into the strengths
of formulas due to their test quality.

The data points duckling-4cfe88ea, duckling-ea8a4f6d, pandoc-4
and pandoc-3be256efb did not result in Top50 for any of the existing for-
mulas. Again, we suggest that this is mostly due to the test suite and its at-
tributes highlighted in the previous subsection. Without faulty expressions
that are covered by failing tests, most formulas result in a suspiciousness of
0. Furthermore, formulas that include passing tests also struggle with the
duckling data point, since most expressions are covered by only one or a few
passing tests. These few tests are rich as they contain multiple examples, but
do not take advantage of the considered formulas.

The overall applicability of the formulas is quite high. The small data
points of HLS are especially well predictable with formulas, motivating ap-
plications for script-sized programs. For duckling, organizing tests into a
corpus in combination with code generation makes formulas unsuitable.

RQ1.B: Existing SBFL Formulas

Ochiai and DStar produce the best Top50 results with an average of 4.7
and 4.3 errors correctly reported in the �rst 50 expressions. All formulas
struggle with duckling and pandoc-4, due to the faulty expressions
not being touched by failing tests: A challenge to all spectrum-based
methods, and not speci�c to the functional context.

Applicability of Rules and Correlations To investigate the correlation,
we applied the Pearson correlation coe�cient after combining the spectrums
across projects, shown in �gure 6.11.

Some correlations verify our assumptions that we considered trivial, e.g.
that type lengths correlate with the number of subtypes. For most type-based
rules this correlation is not statistically signi�cant, but more complex types
tend to be longer, have higher arity and order, and result more function appli-
cation. A second block we see are SBFT formulas from literature with Ochiai,
Tarantula, DStar, and OptimalP. This is mathematically plausible, as they are
proportional to 𝑛𝑒𝑓 , the number of failing tests for this expression, in their
formulas (see table 6.7). Most rules do not have a signi�cant correlation with
each other, and, except for the two blocks, there are no other visible trends.
Although this seems underwhelming, we want to stress that most rules do
not correlate. For example, rTFail and rTFailFreq do not correlate signi�-
cantly within our data, implying that the execution frequency is not directly
proportional to the number of tests (analogue to rTPass and rTPassFreq).

180



6.4. Results

Table 6.6: Formula Top50 Results
Program Faults Tarantula Ochiai DStar 3 OptimalP
hls-2 15 2 2 2 2
hls-
afac9b18

17 17 17 17 17

duckling-
4cfe88ea

4 0 0 0 0

duckling-
328e59eb

26 1 1 4 0

duckling-
ea8a4f6d

5 0 0 0 0

duckling-
28ddc3bf

5 0 0 0 0

pandoc-4 12 0 0 0 0
pandoc-5 8 8 8 0 0
pandoc-6 39 0 21 21 25
pandoc-7 72 3 3 3 0
pandoc-
3be256efb

6 0 0 0 0

mean 17 2.8 4.7 4.3 4
median 12 0 1 0 0

This �nding motivates us to investigate formulas focusing on frequency, as
they seem more distinct from test failures than expected.

In general, the lack of correlation proves some trivial assumptions to be
false, motivating further research and adjustments of existing formulas. We
expect imperative programs to have similar patterns, but they can only be
found as clearly in functional programs. Inferred type information at the
expression level is uncommon in other paradigms, and investigating corre-
lations between types, constraints, function arity and faults is out of reach
for most imperative languages.

RQ1.D: Rule Correlations

Most rules do not correlate according to the Pearson coe�cient. Type
rules and popular SBFL formulas form (mostly non-signi�cant) trends
within the correlations.

A�ributes of SBFL Models

Logistic & Linear Regression In both logistic and linear regression for
both scaled and unscaled features, the resulting weights result in signi�cant

181



6. Functional Spectrums for Fault Localization

Figure 6.7: Decision Tree for Pandoc-5 (scaled features, classic-rules)

variance, indicating over�tting. For example, many type rules di�er in logis-
tic regression polarity despite being correlated (see RQ1.D).

Decision Trees Decision trees required a class-balanced �tting using an
entropy measure to produce su�cient results. A visible trend is the repro-
duction of the SBFL formula rankings as in �gure 6.7. Given the e�ectiveness
of Ochiai, as observed in RQ1.B, this is an understandable result.

For the larger programs (pandoc-6 & pandoc-7), the trees often resulted
in con�gurations that lean left or right with single expression branches. Tree
pruning could not address this form of over�tting, as the resulting pruned
trees remain with a high entropy.

Explainable conditions, such as if it is a leaf, use Ochiai; otherwise, Taran-
tula, were unfortunately not observed. Trees that were striking to the au-
thors are those that use one of the well-performing formulas (e.g., DStar),
as root of the tree, and then use a niche rule such as rHamming, rRogot1 or
rNumGoldFails, which apply to very few locations.

This shortcoming of decision trees is known and motivates the use of a
random forest ensemble.

Genetic Algorithms A key observation is that genetic algorithms (GAs)
faced convergence challenges with speci�c programs: pandoc-4,
duckling-4cfe88ea, duckling-ea8a4f6d, and duckling-28ddc3bf, ex-
hausting the maximum number of generations allocated without achieving
early termination. The non-convergence co-occurs with the absence of touched
faults. Our educated guess is that a it is hard for randomly generated weights
(that is, the initial population) to produce any correct ranking, and b for
the untouched faults the individuals who classify faults are uniquely picking
single attributes and the combination skews the weights again. Individuals
that rank faults are fragile, and mutation and combination lose bene�cial at-
tributes, stopping the genetic search to stagnation.

182



6.4. Results

RQ2.A: Development of SBFL Models

Most models struggled with forms of over�tting. Linear and logistic re-
gression, as well as decision trees, struggled with the sparse data. Ge-
netic algorithms face issues converging for programs with untouched
faults.

Generalizability of SBFL Models

Classi�ers When investigating the classi�ers (decision trees, random forests,
and logistic regression), an early �nding was that all three generalize better
on scaled features. An overview of the transfer performance of the classi�ers
is shown in �gure 6.8. We see the trends in which classi�ers are grouped ac-
cording to their false and true positives. Logistic regression produces many
true positives and false positives (≈90% false positives). Put in perspective,
for many data points, a logistic regressor will give 100 faulty candidates, of
which nine will be true faults. Although this is likely frustrating for devel-
opers, it can be suitable for tooling (see section 6.5.1).

The best performance with good precision was achieved by random forests
using only SBFL formulas. On average, an ensemble of formula-based deci-
sion trees reports �ve faults, of which ≈2.5 will be true faults. This is a con-
vincing rate for actual usage, given that the reported numbers are averages;
for many programs, random forests (and decision trees) were not reporting
faults as they were not certain enough. This leads to a low number of true
positives, but upon author inspection, most of the actually suggested faults
were either true faults or reasonably close.

Throughout the con�gurations, the classic SBFL formulas performed best
in all classi�ers. This is due to their good performance on data points with
high faults for which the original formulas also performed well (pandoc-7).
The all-rules and cherries �nd fewer faults and produce more false pos-
itives, but are better at predicting faults of the most challenging data points
pandoc-4, duckling-4cfe88ea and duckling-ea8a4f6d. Depending on
the goals, the logistic regression with cherry-con�guration is able to predict
faults that were not touched by failing tests, at the cost of a high noise ratio.

Regressors Across the board, the regressors performed better on the un-
scaled data and primarily produced good Top50-scores on the data points
with faults covered by failing tests. Due to poor performance, we present
only examples of regressors when compared to data points that have loca-
tions touched by failing tests. Most regressors performed worse than exist-

183



6. Functional Spectrums for Fault Localization

Figure 6.8: Transfer Performance of Classi�ers

ing formulas, with the exception of genetic algorithms seen in �gure 6.9 (and
Top10 in appendix �gure 6.12). We see that especially for the Top10 genetic
search produces much better averages than the formulas.

We stress that the averaged results only indicate the most fruitful con�g-
uration - the results varied greatly from regressor to regressor and per target
data point. Thus, we want to highlight two types of well-formed searches
in �gure 6.10. The orange bars indicate the achieved Top50-score, while the
blue frame indicates the maximum possible faults.

Figure 6.10a show the results when using the weights originating from
the genetic search over HLS-2 using classic formulas. We observe that this
con�guration is well suited for a few programs and poor for others, but tops
the individual formulas in mean-Top50. In general, we noticed that the small
programs from HLS produced some of the best regressors, probably because
the smaller number of entries resulted in smaller weights less prone to over-
�tting. Figure 6.10b are the results retrieved from �tting original rules
(i.e., only rules novel from this work) on duckling-28ddc3bf. The result-
ing weights produce Top50 suggestions for all data points except pandoc-6.
This model has broad generalizability across the investigated programs and is
one of the drivers of the good median metrics of search-based Top50 results.

When looking for such individual results, we saw similar trends (un-
even and even distributions of predictions) across all regressors, with genetic
search producing the most visible trends due to the best predictions.

The best results were achieved for data points without faults executed
by failing tests in which three con�gurations with a Top50 of 1, when �t-
ting MLPs on pandoc-4, pandoc-5 and pandoc-3be256efb with the origi-
nal rules. Such small variations are in the realm of expected randomness and
might not be worth further investigation.

184



6.5. Discussion

Figure 6.9: Averaged Top50-score for genetic search

RQ2.B: Applicability of Models

Classi�ers performed better for scaled rules, whereas regressors had dif-
�culties with unscaled features. Logistic regression produces high recall,
but su�ers from false positives. Random forests produced a good ratio of
true to false positives, but did not have a high recall. Of the regressors,
only genetic search beat the original formulas in average and median,
especially in Top10.

6.5 Discussion

Quality of formulas In general, the existing SBFL formulas performed
well to the point that they might be used in development. The achieved
rankings beat some of the existing research in Java, when the di�erence in
granularity is taken into account: most research focuses on statements or
blocks, but even the expression level seems reasonable. As formulas do not
require training data and are easily applicable, they form attractive targets
for Haskell tooling, e.g., suggesting points of interest on a failing PR or high-
lighting code of failing test runs. It might be possible to adapt existing formu-
las to Haskell by introducing the frequency of executions instead of binary

185



6. Functional Spectrums for Fault Localization

(a) Top50 from HLS-2 with original rules

(b) Top50 from duckling-28ddc3bf with original rules
Figure 6.10: Example performance of promising search models

186



6.5. Discussion

coverage through tests. Another way to get a better result is the reduction
of a spectrum, possibly through �ltering for AST properties or types.

However, the results of this work also show that there are unique prob-
lems with programs whose faults are not (directly) executed by failing tests.
For such programs and maybe other tasks (defect prediction, test generation),
novel rules based on types or AST structure can prove successful. With func-
tional programming often used for domain-speci�c languages or code gener-
ation, we expect faults of this kind to be more prominent than in imperative
programs. We suggest that ensemble-style classi�ers are used to utilize the
best of both worlds. For most bugs, the existing formulas seem su�cient
(or, one of them is), while unique features might play a role heavily depen-
dent on the programs structure. Classi�er �tted over multiple projects, also
including bug-free ones, are a promising next step.

Project & Test Structure One recurring consideration throughout all re-
sults was the strong dependency on the project structure and the tests.

Duckling’s approach of unifying tests into a corpus of examples makes it
easy for contributors and allows for a smoother execution against the gener-
ated code, while posing signi�cant challenges for fault localization. Similarly,
many contributors (or users) to Pandoc report bugs by providing examples
of failing documents that are translated into a system-level regression test.
This is very economical for the maintainers, but our results show that pan-
doc programs with unit-level tests (pandoc-6 & pandoc-7) were the most
approachable for all algorithms and formulas. On the other hand, the HLS
data points make use of a great degree of modularity; this is already visible,
with both programs being plugins. This separation already leads to drasti-
cally smaller spectrums, and even more complicated issues (hls-afac9b18
deleting lines on usage with other plugins) were translatable into side-e�ect-
free unit tests. We understand that not every project can be modular to this
extent, but, especially given the size, number of contributors, and changes in
Pandoc and Duckling, fault localization can pay o� [5].

Closing our thoughts, we would like to stress that functional program-
ming is precisely the domain where excellent modularity can be achieved.
The greater the modularity, the greater the applicability of tooling such as
SBFL. For projects that have a suitable test suite, even simple SBFL formulas
have immediate payo�.

6.5.1 Future Work

IDE integration One future path would be to look at the integration of
spectrum-based fault localization into IDE tools such as HLS, enabling users

187



6. Functional Spectrums for Fault Localization

to get more out of their test suite than just a pass/fail. Apart from techni-
cal challenges in balancing performance and information, experiments can
identify user needs when engaging with such tooling.

Innocence One way to extend this work is to introduce the notion of in-
nocence. Here, we focus on the suspiciousness of a given statement, but in a
typed setting, we can verify certain functions. This could involve functions
that are veri�ed using tools such as SmallCheck, where we test every possible
invocation of a function of type, e.g. Bool -> a by applying it to both True

and False and checking that the output is correct. It might be extended to
other concepts, e.g. innocent types or innocent modules from user-declaration.
Innocent locations can be excluded from the fault localization process.

6.6 Related Work and Conclusion

Li et al. Comparable work on spectrum-based fault localization for Haskell
originates from Li et al. [14]. They collect open source bugs and apply ex-
isting SBFL formulas on an expression-level spectrum. To improve general-
izability and introduce an ML approach, the programs were also mutated to
extend their data set. Although they publish the dataset which we reuse, the
original code is not available. Li et al. have similar goals in introducing SBFL
for Haskell, but many of the details di�er. On a more fundamental level, our
spectrums extend previous work with unique attributes of types, tests, and
identi�ers. We introduce rules that extend the existing literature to capture
more concepts than SBFL formulas currently can. Their approach includes
data augmentation, which forms a great venue to synthesize the e�orts of
both works in future research.

HaskellFL implements the Ochiai and Tarantula algorithms for Haskell
code [31]. They develop a custom compiler that compiles the program into
S K I-combinators for evaluation, to determine the lines involved in a fault.
As they do not integrate with HPC or GHC, an application for real-world
programs proves di�cult, and no evaluation on large programs is provided.

6.6.1 Conclusion

This paper aims to extend spectrum-based fault localization for Haskell and
evaluate its applicability to real-world faults. To achieve this, we imple-
mented a Tasty ingredient that allows the generation of spectrums with express-
ion–level granularity, including additional information on types and iden-

188



6.6. Related Work and Conclusion

ti�ers. Making use of the richer information, we implemented rules that
capture the complexity of types, AST structure, or identi�ers and applied
them to a total of 11 real-world programs. We used the rules to investigate
the attributes of the spectrums and to �t classi�ers and regressors. Our ex-
ploration uncovered unique kinds of failures: faults that were not covered
by failing tests. These failures structured the results into two groups: for
most programs, the faults were covered by tests, and existing SBFL formu-
las performed well and were only outperformed by regression models that
also make use of formulas as features. For the faults not touched by fail-
ing tests, models based on additional information (e.g., types or identi�ers)
were necessary to produce any correct prediction. However, these faults re-
main a challenging case and require further investigation. The contributions
of this work hopefully open up a broader discussion of the applicability of
SBFL for Haskell. The easy adoption through a plugin allows developers and
researchers to experiment and provide information on user needs alongside
a greater variety of projects. Further insights in addition to our initial in-
vestigation might also form a solid basis for new Haskell-specialized formu-
las. Especially, the novel type of failures requires approximation not directly
based on test failures, but exploits the project structure and types.

Why you should care about SBFL One of the big selling point of Haskell
is the strong type systems and the resulting compiler feedback. But even with
strong types, errors can occur (see �gure 6.1) and require testing. While the
compiler assists the program, tools assist the programmer. Especially within
the boundaries of a strong type system in a lazy language, the rich informa-
tion of types and the lack of side e�ects allow for better localization than
imperative languages could dream of. All e�orts, whether from developers,
fault localization tools, tests, or compilers, can go hand in hand to provide
the best program quality with the least e�ort. Thanks to the ongoing e�orts
of the Haskell Language Server project, it is high time to introduce new soft-
ware tooling for Haskell. We hope that the insights provided by our work
will provide guidance when designing these tools.

Acknowledgements

We thank David Sands and Matthew Sottile for many conversations about
spectrums, and Alejandro Russo for his insight on FP-speci�c adaptions. This
work was partially supported by the Wallenberg AI, Autonomous Systems
and Software Program (WASP) funded by the Knuth and Alice Wallenberg
Foundation.

189



6. Functional Spectrums for Fault Localization

Appendix

Figure 6.11: Pearson Correlation Matrix

Figure 6.12: Averaged Top10-score for genetic search

190



6.6. Related Work and Conclusion

Table 6.7: Overview of the rules in the rules-based system.
Rules Description

Test-type count

rTFail & rTPass Total number of failing tests involving this
location

rPropFail & rPropPass Number of failing QuickCheck tests involv-
ing this location

rUnitFail & rUnitPass Number of failing unit tests involving this lo-
cation

rGoldenFail & rGoldenPass Number of failing golden tests involving this
location

rOtherTestFail & rOtherTestPass Number of other failing tests involving this
location

rTFailFreq & rTPassFreq Sums the number of evaluations in failing
and passing tests involving this location.

Formulas from SBFL literature 𝑛𝑒𝑝 /𝑛𝑒𝑓 is the number of passing/failing tests
the expression is involved in, while 𝑛𝑡𝑝 /𝑛𝑡𝑓 is
the total number of passes/fails.

rJaccard
𝑛𝑒𝑓

𝑛𝑒𝑓 +𝑛𝑡𝑓 +𝑛𝑒𝑝

rHamming 𝑛𝑒𝑓 +𝑛𝑡𝑝

rOptimal
{︃
−1 𝑖𝑓 𝑛𝑡𝑓 > 0
𝑛𝑡𝑝 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

rOptimalP 𝑛𝑒𝑓 −
𝑛𝑒𝑝

𝑛𝑒𝑝+𝑛𝑡𝑝+1

rTarantula

𝑛𝑒𝑓
𝑛𝑒𝑓 +𝑛𝑡𝑓

𝑛𝑒𝑓
𝑛𝑒𝑓 +𝑛𝑡𝑓

+
𝑛𝑒𝑝

𝑛𝑒𝑝+𝑛𝑡𝑝

rOchiai
𝑛𝑒𝑓√︁

(𝑛𝑒𝑓 +𝑛𝑡𝑓 )(𝑛𝑒𝑓 +𝑛𝑒𝑝 )

rDStar k
(𝑛𝑒𝑓 )

𝑘

𝑛𝑡𝑓 +𝑛𝑒𝑝

rRogot1 1
2 (

𝑛𝑒𝑓
2𝑛𝑒𝑓 +𝑛𝑡𝑓 +𝑛𝑒𝑝

+
𝑛𝑡𝑝

2𝑛𝑡𝑝+𝑛𝑡𝑓 +𝑛𝑒𝑝
)

AST structure-based rules See table 6.3

Type-based formula rules See table 6.4

191



6. Functional Spectrums for Fault Localization

Table 6.8: Test-coverage within gathered spectrums
Program Expressions

covered
by failing
Tests

Expressions
untouched
by failing
tests

Faulty Ex-
pressions
not covered
by failing
tests

Faulty Ex-
pressions
covered by
failing tests

hls-2 205 64 1 14

hls-afac 35 87 0 17

duckling-
4cfe88ea

1791 297705 4 0

duckling-
328e59eb

1165 275942 0 26

duckling-
ea8a4f6d

2541 286195 5 0

duckling-
28ddc3bf

2256 260307 0 5

pandoc-4 419 90669 12 0

pandoc-5 238 60410 0 8
pandoc-6 2175 57203 34 5
pandoc-7 2235 58839 34 38
pandoc-
3be256efb

623 88149 0 6

192



Bibliography

[1] L. Applis and A. Panichella. Hasbugs-handpicked haskell bugs. In 2023
IEEE/ACM 20th International Conference on Mining Software Repositories
(MSR), pages 223–227. IEEE, 2023.

[2] J. Blank and K. Deb. pymoo: Multi-objective optimization in python.
IEEE Access, 8:89497–89509, 2020.

[3] T. Britton, L. Jeng, G. Carver, P. Cheak, and T. Katzenellenbogen. Re-
versible debugging software. Judge Bus. School, Univ. Cambridge, Cam-
bridge, UK, Tech. Rep, 229, 2013.

[4] R. Caballero, A. Riesco, and J. Silva. A survey of algorithmic debugging.
ACM Computing Surveys (CSUR), 50(4):1–35, 2017.

[5] T. Dao, N. Meng, and T. Nguyen. Triggering modes in spectrum-based
multi-location fault localization. In Proceedings of the 31st ACM Joint
European Software Engineering Conference and Symposium on the Foun-
dations of Software Engineering, ESEC/FSE 2023, page 1774–1785, New
York, NY, USA, 2023. Association for Computing Machinery.

[6] K. Deb. Multi-objective optimization using evolutionary algorithms, vol-
ume 16. John Wiley & Sons, 2001.

[7] K. Deb and R. Agrawal. Simulated binary crossover for continuous
search space. Complex systems, 9(2):115–148, 1995.

[8] M. Faddegon and O. Chitil. Algorithmic debugging of real-world haskell
programs: deriving dependencies from the cost centre stack. ACM SIG-
PLAN Notices, 50(6):33–42, 2015.

[9] R. Fagin, R. Kumar, and D. Sivakumar. Comparing top k lists. SIAM
Journal on discrete mathematics, 17(1):134–160, 2003.

[10] R. L. Huang, E. Pertseva, M. Coblenz, and S. Lerner. How do haskell
programmers debug? Plateau Workshop.

193



Bibliography

[11] J. A. Jones and M. J. Harrold. Empirical evaluation of the tarantula auto-
matic fault-localization technique. In Proceedings of the 20th IEEE/ACM
international Conference on Automated software engineering, pages 273–
282, 2005.

[12] J. A. Jones, M. J. Harrold, and J. Stasko. Visualization of test informa-
tion to assist fault localization. In Proceedings of the 24th International
Conference on Software Engineering, ICSE ’02, page 467–477, New York,
NY, USA, 2002. Association for Computing Machinery.

[13] R. Just, D. Jalali, and M. D. Ernst. Defects4j: A database of existing faults
to enable controlled testing studies for java programs. In Proceedings of
the 2014 international symposium on software testing and analysis, pages
437–440, 2014.

[14] F. Li, M. Wang, and D. Hao. Bridging the gap between di�erent pro-
gramming paradigms in coverage-based fault localization. In Proceed-
ings of the 13th Asia-Paci�c Symposium on Internetware, pages 75–84,
2022.

[15] C. Liu, X. Yan, L. Fei, J. Han, and S. P. Midki�. Sober: statistical model-
based bug localization. ACM SIGSOFT Software Engineering Notes,
30(5):286–295, 2005.

[16] D. Lo, L. Jiang, A. Budi, et al. Comprehensive evaluation of association
measures for fault localization. In 2010 IEEE International Conference on
Software Maintenance, pages 1–10. IEEE, 2010.

[17] J. Lubin and S. E. Chasins. How statically-typed functional program-
mers write code. Proceedings of the ACM on Programming Languages,
5(OOPSLA):1–30, 2021.

[18] S. Marlow, J. Iborra, B. Pope, and A. Gill. A lightweight interactive
debugger for haskell. In Proceedings of the ACM SIGPLAN workshop on
Haskell workshop, pages 13–24, 2007.

[19] M. D. McKay, R. J. Beckman, and W. J. Conover. A comparison of three
methods for selecting values of input variables in the analysis of output
from a computer code. Technometrics, 42(1):55–61, 2000.

[20] B. L. Miller, D. E. Goldberg, et al. Genetic algorithms, tournament se-
lection, and the e�ects of noise. Complex systems, 9(3):193–212, 1995.

194



Bibliography

[21] B. Mosolygó, N. Vándor, G. Antal, and P. Hegedűs. On the rise and fall
of simple stupid bugs: a life-cycle analysis of sstubs. In 2021 IEEE/ACM
18th International Conference on Mining Software Repositories (MSR),
pages 495–499. IEEE, 2021.

[22] L. Naish, H. J. Lee, and K. Ramamohanarao. A model for spectra-
based software diagnosis. ACM Transactions on software engineering
and methodology (TOSEM), 20(3):1–32, 2011.

[23] V. Nguyen, S. Deeds-Rubin, T. Tan, and B. Boehm. A sloc counting
standard. In Cocomo ii forum, volume 2007, pages 1–16. Citeseer, 2007.

[24] C. Parnin and A. Orso. Are automated debugging techniques actually
helping programmers? In Proceedings of the 2011 international sympo-
sium on software testing and analysis, pages 199–209, 2011.

[25] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion,
O. Grisel, M. Blondel, P. Prettenhofer, R. Weiss, V. Dubourg, J. Vander-
plas, A. Passos, D. Cournapeau, M. Brucher, M. Perrot, and E. Duch-
esnay. Scikit-learn: Machine learning in Python. Journal of Machine
Learning Research, 12:2825–2830, 2011.

[26] M. Renieres and S. P. Reiss. Fault localization with nearest neighbor
queries. In 18th IEEE International Conference on Automated Software
Engineering, 2003. Proceedings., pages 30–39. IEEE, 2003.

[27] T. Reps, T. Ball, M. Das, and J. Larus. The use of program pro�ling
for software maintenance with applications to the year 2000 problem.
In Proceedings of the 6th European SOFTWARE ENGINEERING confer-
ence held jointly with the 5th ACM SIGSOFT international symposium on
Foundations of software engineering, pages 432–449, 1997.

[28] A. Riboira and R. Abreu. The gzoltar project: A graphical debugger in-
terface. In International Academic and Industrial Conference on Practice
and Research Techniques, pages 215–218. Springer, 2010.

[29] Q. I. Sarhan and A. Beszedes. A survey of challenges in spectrum-based
software fault localization. IEEE Access, 10:10618–10639, 2022.

[30] A. Tondwalkar, R. Recto, W. Weimer, and R. Jhala. Finding bugs in liquid
haskell,-. 2016.

[31] V. Vasconcelos and M. A. Bigonha. Haskell�: A tool for detecting log-
ical errors in haskell. International Journal of Computer and Systems
Engineering, 15(8):479–493, 2021.

195



Bibliography

[32] W. E. Wong, V. Debroy, R. Gao, and Y. Li. The dstar method for e�ective
software fault localization. IEEE Transactions on Reliability, 63(1):290–
308, 2013.

[33] W. E. Wong, R. Gao, Y. Li, R. Abreu, and F. Wotawa. A survey on
software fault localization. IEEE Transactions on Software Engineering,
42(8):707–740, 2016.

196


	Introduction
	Motivation and Overview
	Background and Related Work
	Haskell
	Glasgow Haskell Compiler (GHC)
	Typed–Holes
	Program Synthesis
	Automatic Program Repair
	Property–Based Testing

	Future Work
	PrIM: PropR Improved
	Re–Thinking Compiler Design

	Conclusion
	Thesis structure
	Bibliography

	Suggesting Valid Hole Fits for Typed-Holes
	Introduction
	Contributions
	Background

	Case Studies
	Exercise from Programming in Haskell
	The Lens Library

	Implementation
	Inputs & Outputs
	Relevant Constraints
	Candidates
	Checking for Fit
	Refinement hole fits
	Sorting the Output
	Dealing with Side-effects

	An Additional Application
	Related Work & Ideas
	Conclusion
	Future Work
	Current Status

	Bibliography

	PropR: Property–Based Automatic Program Repair
	Introduction
	Background and Related Work
	Property-Based Testing
	Haskell, GHC & Typed Holes
	GenProg, Genetic Program Repair and Patch Representation
	Repair of Formally Verified Programs and Program Syn-thesis

	Technical Details — PropR
	Compiler-Driven Mutation
	Fixes
	Checking Fixes
	Search
	Looping and Finalizing Results

	Empirical Study
	Research Questions
	Dataset
	Methodology / Experiment Design

	Results
	Discussion
	Threats to Validity
	Conclusion
	Online Resources
	Bibliography

	Spectacular
	Introduction
	Background
	Equality-Constrained Tree Automata (ECTAs)
	QuickCheck and the QuickSpec problem

	The Spectacular tool
	Signatures
	Supplying Givens
	Enumerating Terms
	Pruning
	Interleaving Testing and Enumeration
	Testing of Terms
	Generalization of Laws

	Evaluation
	Improvements upon QuickSpec

	Related Work
	Conclusion
	Bibliography

	CSI: Haskell
	Introduction
	Background and Related Work
	Approach
	Evaluation Trees
	Trace Data
	Example
	Persistence and Tix Upgrades
	Output
	Summarization and Presentation
	Data

	Initial Results
	Next Steps
	Conclusion
	Bibliography

	Functional Spectrums for Fault Localization
	Introduction
	Example
	Contributions

	Background
	Implementation & Experiment Setup
	Spectrum Generation
	Rules
	Data
	Experimental Setup

	Results
	Discussion
	Future Work

	Related Work and Conclusion
	Conclusion

	Bibliography


