
Chapter 1

Introduction

1.1 Motivation and Overview

Motivation

When developers write programs, they do so with specific goals in mind and

some idea of how to achieve these goals. Traditionally, they communicate

these goals and ideas to the computer using text in the form of source code,

including the term–level implementation, and, in languages like Haskell, a

type–level specification that lives alongside the implementation. They often

model the intended behavior by providing type annotations alongside their

functions and variables, as well as a suite of tests that demonstrates the in-

tended runtime behavior of the program. The packaged source code and tests

taken as a whole then provide much more information to the compiler than

merely the implementation. Half of the time spent programming is spent on

debugging [6], whichmeans that developers are working on almost complete

programs. As the programs are almost complete, there are usually some tests

available (at least for the bug that is being fixed), and the types involved have

stabilized. This places a lot of constraints on the possible valid implementa-

tions of the program, which we can use to synthesize fixes to suggest to the

developer and guide them towards a correct solution. With a sufficiently rich

specification, we can even automatically repair an incorrect implementation.
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However, in modern programming practice, this information is used in

a yes–or–no manner: Does the program type check? Does it pass the test

suite? In this thesis, I show how to go beyond the yes–or–no use case and

make better use of the information already present in the source package for:

• Program synthesis using valid hole–fits in GHC,

• Automatic program repair with PropR,

• Test suite bootstrapping and discovery using Spectacular,

• Trace–based fault localization using CSI: Haskell, and finally

• Spectrum–based fault localization using TastySpectrum.

Overview

Program synthesis is very computationally heavy, making it intractable

to synthesize large programs. A more focused approach is required. But how

should we direct that focus?

Typed–Holes In this thesis, we make heavy use of typed–holes. The pro-
grammer specifies a typed–hole during development, usually using an un-

derscore (_), as seen in figure 1.1.

minimumOrBound :: [Int] -> Int
minimumOrBound [] = _

minimumOrBound (x:xs) = min x (minimumOrBound xs)

Figure 1.1: An example of a program with a hole in it.

These typed–holes allow us to focus our synthesis efforts on that partic-

ular part of the program to fill the hole. By integrating with the compiler

(GHC) and its constraint–based type checker, we can come up with (synthe-
size) identifiers and expressions such that we can replace the hole and the

resulting program would be valid, i.e., well–typed. An example can be seen

in figure 1.2. Synthesizing these valid–hole fits for typed–holes is explored

in–depth in the first paper of this thesis [11].
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• Found hole: _ :: Int
• In an equation for ‘minimumOrBound’: minimumOrBound [] = _

• Relevant bindings include
minimum :: [Int] -> Int (bound at f.hs:4:1)

Valid hole fits include
maxBound :: forall a. Bounded a => a
with maxBound @Int
(imported from ‘Prelude’ at f.hs:1:1-31
(and originally defined in ‘GHC.Enum’))

minBound :: forall a. Bounded a => a
with minBound @Int
(imported from ‘Prelude’ at f.hs:1:1-31
(and originally defined in ‘GHC.Enum’))

Figure 1.2: A program with a hole in it and the GHC error.

Automatic Program Repair It is not enough for a program to be merely

type–correct. As we see in figure 1.3, even if the types are correct, the pro-

gram can still be wrong. In more advanced type systems, like that of Agda,

correctness can be fully specified in the types. However, in weaker type sys-

tems like that of Haskell, we have to resort to runtime verification in the form

of a test suite.

minimumOrBound :: [Int] -> Int
minimumOrBound [] = minBound -- BUG: Should be maxBound
minimumOrBound (x:xs) = min x (minimumOrBound xs)

Figure 1.3: An incorrect implementation

By adding a test suite, the programmer sees that the program is not cor-

rect: it always returns minBound!

prop_unit :: Bool
prop_unit = minimumOrBound [2,1,3] == 1

prop_is_min :: [Int] -> Bool
prop_is_min xs = let m = minimumOrBound xs

in null (filter (< m) xs)

Figure 1.4: A minimal test suite for our example

The programmer could, of course, realize theirmistake and change minBound

to maxBound, which is the right solution and passes the test suite.
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The next step is to automate this process: instead of having the program-

mer manually choose which parts of the program to focus the synthesis and

repair on, we can run the tests and pick likely candidates to target.

By replacing parts of the code with holes, synthesizing valid–hole fits

for those holes, and re–running the test suite to see if we are closer to a so-

lution, we should eventually be able to repair any program. This can scale

to programs that require multiple fixes, by using genetic algorithms to com-

bine multiple solutions that partially repair a program into one solution that

passes the entire test suite. This approach is explored in detail in [17].

minimumOrBound :: [Int] -> Int
minimumOrBound [] = maxBound
minimumOrBound (x:xs) = min x (minimumOrBound xs)

Figure 1.5: The correct implementation

Synthesizing Specifications This approach relies on us being able to syn-

thesize good hole–fit candidates and, moreover, the availability of a good test

suite. This is not always the case, especially with older programs. In the third

paper [18] in this thesis, we explore how we can use a recent synthesis tech-

nique based on equality–constrained tree–automata (ECTAs) to efficiently

synthesize multi–term Haskell expressions directly from the types as seen

by the compiler, and how we can synthesize a specification using equiva-

lence classes for large programs.

Fault Localization Being able to synthesize good candidates is not enough;

we have to be able to effectively determinewhere to target our synthesis. The

next two papers in this thesis [15, 16] focus on improving fault localization

for functional programs. In the fourth paper, CSI: Haskell, we extend the

compiler to add low–level tracing of Haskell programs, and to capture the

suffix of that trace. In the case of infinite loops or errors, the suffix of the

trace allows us to determine which parts were recently evaluated and which

parts were evaluated earlier and less likely to be the cause of the error or loop.

Similarly, when the bug is caused by invalid data being consumed, the fact

that they are likely to be recently evaluated in a lazy language like Haskell

allows us to more quickly localize the fault. By focusing on recent locations,

we could speed up program repair considerably.

The fifth paper on functional spectrums implements spectrum collection

and spectrum–based fault localization for the popular Haskell testing frame-

work Tasty. A spectrum is essentially a matrix of tests, the locations each

of them touches and whether they failed or not. Plugging these into various
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formulas, we can quantify the suspiciousness of each location, which indi-

cates how strongly we believe it to be the cause of the fault. In the future

work section, we describe how we can combine the previous work into an

improved version of PropR.

1.2 Background and Related Work

For a better understanding of the work in this thesis and its context, we

must elaborate on the components involved and the related work in the field.

Specifically, we:

• Introduce theHaskell programming language and the GlasgowHaskell

Compiler (GHC) with which our explorations have been conducted,

• give a brief overview of program synthesis and the specific techniques

we use to synthesize fixes,

• explain property–based testing that allows us to verify our synthesis,

• have look at automatic program repair and genetic programming that

allows us to scale program repair beyond single fixes,

• Examine the equality–constrained tree automata (ECTAs) that allow

us to efficiently synthesizemulti–termHaskell expressions, and finally,

• fault localization using spectrum–based methods and program tracing.

1.2.1 Haskell

Our explorations are conducted in the functional programming language

Haskell, which sports a strong type system with rich type–inference and

non–strict evaluation by default. This means that analysis can often be done

on an expression–by–expression basis, without having to consider side ef-

fects. It also allows us to trace programs and closely observe the data flow.

The strong type system and type–inference means that the information that

the user provides can be further extrapolated, and the popular property–

based testing framework QuickCheck (see section 1.2.6) pushes this even fur-

ther, allowing users to write properties that are extrapolated into tests that

cover many more cases than a comparable number of unit tests.
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Prelude> (_ "hello, world") :: [String]
<interactive>:1:2: error:
• Found hole: _ :: [Char] -> [String]
• In the expression: _

In the expression: (_ "hello, world") :: [String]
In an equation for ‘it’: it = (_ "hello, world") :: [String]

• Relevant bindings include
it :: [String] (bound at <interactive>:1:1)

Figure 1.6: An example of a typed–hole error message in GHCi 8.10.6.

1.2.2 Glasgow Haskell Compiler (GHC)

TheGlasgowHaskell Compiler (GHC) is a state–of–the–art, industrial–strength

compiler for Haskell, widely used in academia and industry. GHC has a few

features that are particularly relevant to our exploration:

• GHC has support for typed–holes (see section 1.2.3), which we can use

to direct our efforts and query the compiler for relevant information,

• GHC has a compiler plugin infrastructure that allows you to intervene

at certain stages of compilation (such as after desugaring, or during

type checking) and inject your own behavior, making it particularly

suitable for experimentation, as you can modify parts of the compila-

tion pipeline without digging into the compiler’s internals, and

• GHC is easy to extend, as I did with my initial valid hole–fit sugges-

tions (presented in the first paper of this thesis [11]) and the subsequent

hole–fit plugins (see section 1.2.3). These were initially implemented

by me as a compiler fork and eventually integrated into the official

compiler release versions 8.6 and 8.10, respectively.

• GHC has built–in program coverage (HPC) that allows us to instru-

ment any library or package to collect traces and spectrums.

1.2.3 Typed–Holes

A typed–hole is a hole in the context of a program, with a type and its con-

straints inferred by the compiler as if the hole were a free variable. Inspired

by a similar feature in Agda, a minimal implementation of typed–holes was

initially added to GHC in version 7.8 [12]. An example of the typed–hole in

(_ "hello, world") :: [String] can be seen in figure 1.6.
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Finding Valid Hole–Fits

Valid hole–fits were inspired by typed–hole suggestions in the PureScript

compiler, but a similar automatic proof–search was available earlier in Agda

as the auto command [12].

Valid hole fits include
lines :: String -> [String]
words :: String -> [String]
repeat :: forall a. a -> [a]
with repeat @String

return :: forall (m :: * -> *) a. Monad m => a -> m a
with return @[] @String

fail :: forall (m :: * -> *) a. MonadFail m => String -> m a
with fail @[] @String

pure :: forall (f :: * -> *) a. Applicative f => a -> f a
with pure @[] @String

(Some hole fits suppressed; ...)

Figure 1.7: An example of valid hole–fits in GHCi, continued from the out-

put in figure 1.6. Presented without imports

As detailed in the first paper of this thesis and in my master’s thesis [11,

12], valid hole–fits are found by constructing an appropriate equality type for

each of the candidate hole–fits and invoking GHC’s type checker. The can-

didate hole–fits are drawn from the global environment (imports, top–level

functions, etc.) or the local context (such as function arguments or locally

let– or where–bound variables). In the hole in figure 1.7, the type of the can-

didate hole–fits are, e.g., the types of the valid hole–fits, String -> [String]

and forall a. a -> [a], but also the types of other non–valid candidates,

such as the type of otherwise :: Bool, the type of [] :: forall a. [a], the

type of map :: (a -> b) -> [a] -> [b], etc. We feed the type checker with

each of the equality types, as well as context of the hole, and any relevant

constraints
1
, and ask the solver to solve the equality. If a solution is possible,

then there is a way to unify the type–variables in the type of the hole and

the type of the candidate hole–fit so that the types match (e.g., setting a to

String in forall a. a -> [a] to get String -> [String]), and the candi-

date hole–fit is then a valid–hole fit. An overview of the process of finding

valid hole–fits is shown in figure 1.8.

1
As an example of relevant constraints, the hole in (show _) will get the type a where

a is an unbound type–variable and the relevant constraints is the set {Show a}.
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Local context Global environment

Candidates

Relevant Constraints

Givens

Type checker/  
Constraint Solver

Filter by checking 
whether type can 
be made to match

Output

Sort by approximate relevance 
(by size or by subsumption)

Type of hole

Generate subtyping wrapper 
from the type of the candidate 

to the type of the hole 

Figure 1.8: An overview of how valid hole–fit suggestions are found [12].

Refinement Hole–Fits

Of special interest are refinement hole–fits, an extension of valid hole–fits

not found in PureScript [11]. For refinement hole–fits, we allow the can-

didate to have more arguments than the hole, where the number of addi-

tional arguments, 𝑛, is defined as the refinement level. This allows us to

find fits like foldr (_a :: Int -> Int -> Int) (_b :: Int) for the hole

_ :: [Int] -> Int, where _a :: Int -> Int -> Int and _b :: Int are two

new holes (with the refinement level is 2). An example of refinement hole–

fits for the hole in figure 1.6 can be seen in figure 1.9.

Refinement hole–fits are particularly useful for synthesis, since we can

recursively fill the additional holes, allowing us to synthesize sophisticated

expressions as hole–fits. Valid hole–fits and refinement hole–fits are detailed

in the first paper of this thesis and in my master’s thesis [11, 12].

Hole–Fit Plugins

Hole–fit plugins are an extension of GHC’s plugin infrastructure that allows

plugin authors to customize the behavior of valid hole–fits by manipulating

what candidates get checked for validity and which of those hole–fits found

to be valid are shown to users [13].
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Valid refinement hole fits include
iterate (_ :: String -> String)
where iterate :: forall a. (a -> a) -> a -> [a]
with iterate @String

replicate (_ :: Int)
where replicate :: forall a. Int -> a -> [a]
with replicate @String

mapM (_ :: Char -> [Char])
where mapM :: forall (t :: * -> *) (m :: * -> *) a b.

(Traversable t, Monad m) =>
(a -> m b) -> t a -> m (t b)

with mapM @[] @[] @Char @Char
traverse (_ :: Char -> [Char])
where traverse :: forall (t :: * -> *) (f :: * -> *) a b.

(Traversable t, Applicative f) =>
(a -> f b) -> t a -> f (t b)

with traverse @[] @[] @Char @Char
map (_ :: Char -> String)
where map :: forall a b. (a -> b) -> [a] -> [b]
with map @Char @String

scanl (_ :: String -> Char -> String) (_ :: [Char])
where scanl :: forall b a. (b -> a -> b) -> b -> [a] -> [b]
with scanl @String @Char

(Some refinement hole fits suppressed; ...)

Figure 1.9: An example of refinement hole–fits in GHCi, with the refine-

ment level set to 2. Continued from the output in figure 1.7.

Presented without imports.

This enables us to filter out candidates from modules and modify the or-

der in which the fits are returned, allowing for more sophisticated heuristics.

It also allows us to modify the synthesis on a per–hole basis, for instance, by

writing a plugin that allows us to inject expressions mined from the context

as candidate hole–fits for program repair. An overview of hole–fit–plugins

is shown in figure 1.10
2
.

Hole–fit plugins also provide an ideal way to inspect and integrate hole–

fit–based synthesis into other tools. Using hole–fit plugins, we can extract

information about the context of a given hole, such as the type, any local

identifiers (such as function arguments), and global identifiers (i.e., imports,

top–level bindings) available for synthesis.

In particular, since the hole–fit plugins run in the type checking phase of

2
Presented as part of the Haskell Implementors’ Workshop and the ICFP student research

competition in 2019 [13].
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Figure 1.10: An overview of typed–hole plugins [13].

GHC’s compilation pipeline, we have access to the types of these identifiers,

local type–variables, implications (i.e., constraints such as Show a =>, and

crucially, access to the GHC constraint solver. This can be very helpful for

synthesis, as explored in [17, 18].

Limitations

The way typed–holes are implemented in GHC poses some limitations. Cur-

rently, they are based on the “unknown identifier” functionality and only

generate an error message. However, recent efforts in, for example, Hazel

have shown that by tightly integrating them into the compiler and the pro-

gramming environment, they can enable a whole different style of program-

ming [29]. We can recover some of this functionality using IDE–plugins such

as theHaskell Language Server (HLS), allowing programmers to interactively

choose valid hole–fits for typed–holes in their IDE, but it sorely lacks the rich

contextual information present in languages such as Hazel.

1.2.4 Program Synthesis

Program synthesis is the generation of code based on a high–level specifica-

tion of how that program should behave [37]. As there is an infinite number

of programs, restricting the search space is key to practical program synthe-

sis. One way to restrict the search space is to use input–output examples,

such as FlashFill [19]. Using only input–output examples can be limiting,

but works well when the target language is domain–specific: this shrinks

the search space by reducing the possible programs that can be written in a

language. Another way to efficiently synthesize programs is by focusing on

parts of the program, such as in sketching, where users write a high–level

sketch of a program but leave holes for synthesis of low–level details [37].

Type–directed synthesis is especially powerful since there are a lot more

ill–typed programs than well–typed ones, and type–errors can be detected
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very early [33]. How well type–directed synthesis can perform depends on

the expressiveness of the type system. For example, expressive type systems

such as the refinement types used in SynQuid allow developers to decorate

types with predicates from a decidable logic, meaning they can more pre-

cisely specify which programs are valid, which improves the program syn-

thesis [33]. However, more expressiveness in the type system comes at the

expense of type–inference. In Haskell, the type of most programs can be

inferred without the developers having to provide type annotations. Type–

directed synthesis has a long history inHaskell, such as the type–based Djinn

synthesizer, which can synthesize Haskell expressions based on the type

[4]. More recent Haskell–based synthesizers include Hoogle+, which uses

type–guided abstract refinement (TYGAR) to find programs composed from

functions in Haskell libraries based on type and input–output examples [20],

and Hectare, which uses an ECTA–based technique to synthesize functions

from the Haskell prelude [22]. Haskell also has some integrated program

synthesis–like features, such as the deriving mechanism that can automati-

cally generate instances for functions like (==) and show [25]. This has later

been extended with the GHC deriving via extension, which allows you to

derive via other instances and gives greater control over how the resulting

instance behaves [5]. However, these only work for type–class instances.

Typed–hole directed synthesis

Typed–hole directed synthesis is a combination of using contextual informa-

tion as in sketching and type information to restrict the search space to only

those programs that satisfy the type, such as the one used in Perelman et al.

for partial expression completion in C# [32] and Myth [31] by Osera et al.

More recent work includes Smyth [24] by Lubin et al., which uses live
bidirectional evaluation to propagate input-output examples generated from

assertions to guide the search, taking it beyond the type–only directed syn-

thesis in this work. In Smyth, they use a language that supports the live
evaluation of code, which includes typed–holes by producing results that are

either values or a “paused” expression that can resume evaluation when the

necessary holes are filled, a la Omar et al. [24, 29]. A key innovation is

supporting live unevaluation, which allows results to be checked against ex-

amples to compute constraints that, if satisfied, ensure that the result even-

tually produces a value that satisfies the examples [24]. By eagerly checking

incomplete programs for counterexamples using constraint propagation, the

synthesizer can eagerly discard programs that can never satisfy the examples

[27]. A similar approach has been implemented in Scrybe byMulleners et al.,

which interleaves refinements and guesses and allows arbitrary functions to
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be used as refinement steps [27]. Further work by Mulleners et al. on the

realizability of polymorphic programs introduces a technique to determine

whether a solution to a given synthesis problem exists [28].

However, all of these synthesizers work on small examples. It is unclear

if the approach scales to large code bases or can support all Haskell features.

One limitation of example propagation is the exponential growth of con-

straint sizes [27]. The term enumeration approach taken in this work has the

advantage that we can place typed–holes anywhere in a program, enumerate

terms that satisfy the type, fill the holes, and use the existing GHC toolchain

to efficiently recompile and check the results with respect to existing test–

suites. Integration with the GHC type–checker allows us to enumerate and

check all possible terms, even those using more advanced language features.

This allows us to do automated program repair even on large code bases,

without having to consider constraint sizes or language feature interactions.

1.2.5 Automatic Program Repair

A practical application of program synthesis is automated program repair,

where we fix bugs in programs according to their specification. There are al-

ready some examples of type–directed program repair, such as Lifty, which

uses the SynQuid refinement type–based technique to repair security policy

violations in a domain specific language [34]. In the second paper of this the-

sis, we investigate the use of type–directed synthesis for automated program

repair. We implemented PropR, a genetic search–based program repair tool

that combines the typed–hole directed synthesis from my first paper with

property–based specifications to automatically repair Haskell programs [17].

Genetic Program Repair

Genetic program repair is a successful generate–and–validate–based approach

to automated program repair based on genetic search [23, 26]. The approach

is exemplified by GenProg, a statement–based automatic program repair for

C–programs, which uses unit tests to determine the locations of faults and

the validity of fixes [23]. The quality of a fix is evaluated based on how

many unit tests they pass, and two fixes are combined into a new fix by

combining partial fixes into a new fix, preferring well–performing fixes to

low–performing fixes [23]. For some programs, this approach can find fixes

that eliminate the bug found by the tests [23]. Current state–of–the–art pro-

gram repair tools, such as Astor, have been based on the same approach,

but mainly target Java [26]. A genetic approach allows us to focus on find-
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ing simple partial fixes and combining them, meaning we can do repair on a

per–fault basis rather than having to consider the whole program.

LLM–based Program Repair

Large Language Models (LLMs) have surged in popularity with the release of

GPT3 and ChatGPT in 2022. They have changed the landscape of synthesis

and repair, with many tools [7, 9, 30] based on training and fine–tuning of

LLMs to synthesize code. Traditional program synthesis techniques strug-

gle with synthesizing large programs, as the search space is too big and the

problem under–specified. We now have tools such as GitHub’s Copilot [9],

ChatGPT [30], and Codex [7], which can generate AI–powered code sugges-

tions [10]. These tools allow programmers to generate massive amounts of

code from short prompts describing what they want.

However, in this thesis, we have not used any LLM–based techniques.

Had they been available in 2018, we certainly would have explored LLMs

for valid hole–fits, and indeed, a neural network–based approach was sug-

gested when the original typed–hole paper was presented. Training a neural

network on available Haskell code could have been an avenue for ranking

valid–hole fits, so that the more relevant suggestion would have been listed

earlier than less relevant ones. However, LLM and neural network–based

approaches have their own challenges. One big challenge is one of distribu-

tion and usability: is it feasible to ship a binary blob of weights along with

the compiler simply to provide code suggestions? Is it viable to build GPU

acceleration of token generation in GHC itself? Are users willing to connect

to a cloud service for such suggestions? The existence of services such as

Copilot [9] seems to suggest so, but this is more in the domain of the IDE

than the compiler.

Another challenge is validating AI–powered code suggestions, and de-

termining whether the generated code satisfies the intent of the programmer

[10]. In this thesis, we explore how to perform valid program repair and syn-

thesis, i.e., given a specification in the form of types and tests, we synthesize

programs that are guaranteed to satisfy the specification and tests. I believe

this will be an important tool in the toolbox for LLM–powered program syn-

thesis: The LLM synthesizes an approximate solution, and then apply tools

like PropR and Spectacular (as described in this thesis) to repair the generated
programs to synthesize one that fully satisfies the specification.
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1.2.6 Property–Based Testing

Property–based testing frameworks such as QuickCheck [8] allow users to

specify properties that functions must satisfy and can be viewed as an intu-

itive way of specifying what constraints should hold for the program. These

properties are tested by generating arbitrary data based on the type of the

property and verifying that the property holds. This allows one property to

be the equivalent of hundreds or thousands of unit tests and using shrinking

to generate a small counterexample when a property does not hold. These

counterexamples can then be used in conjunction with program coverage to

localize the error by noting which expressions were involved in the evalua-

tion leading to the failure of the property. We use properties and their coun-

terexamples in the second paper of this thesis to guide automated program

repair [17]. In [18], we use an ECTA–based technique to synthesize expres-

sions and partition them into equivalence classes to efficiently synthesize

properties for large modules.

ECTA–based Synthesis

Equality–Constrained Tree–Automata is a recently introduced synthesis tech-

nique that was applied to Haskell to synthesize programs from the functions

in the Haskell prelude [22]. Equality–constrained tree automata (ECTAs) [22]
are a new data structure for representing and enumerating a large space of

terms with constraints between sub–terms. We go into more detail on how

they work in the introduction in chapter 4. In chapter 4 , we use ECTAs to

synthesize Haskell expressions that correspond to a value that can be com-

pared for equality when applied to some arguments. In this way, we can

automatically discover expressions that have the same value: a property.

Fault Localization

Fault localization is a technique that takes a buggy program and tries to deter-

mine which part of the program causes the bug, based on static and dynamic

analysis. In this thesis, we employ two dynamic fault localization methods,

tracing and spectrum analysis. We do not explore static methods, since the

types of faults detected by static methods are covered in part by the expres-

sive type system in Haskell.

Spectrum–Based Fault Localization

Spectrum–based fault localization (SBFL) is considered one of themost promi-

nent fault localization techniques due to its efficiency and effectiveness [35].
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With SBFL, we assume the existence of a test suite of both passing and failing

tests and assume that the tests cover the expected behavior. By instrumenting
the code using a coverage tool such as HPC, we can run the test suite and

note the locations involved in each test and whether that test passes or fails.

We use a heuristic called suspiciousness, saying that locations that are more

frequently involved in failing tests than in passing tests are more suspicious.

Using various formulas based on the spectrum, we can assign a suspicious-

ness score to each location in the program based on the number of times

it is evaluated in passing and failing tests, respectively, as well as the total

number of passing and failing tests in the program.

In the PropR paper [17], we use a naive version of SBFL where we only

note the locations that are involved in a failing test and do not consider pass-

ing tests or the total number of tests. We improve this fault localization in

the functional spectrums paper [16], where we introduce the TastySpectrum

library that allows developers to add spectrum generation and analysis to

their test suites. Based on HPC, we add a pass to the test–runner framework,

allowing the spectrum to be collected when the test suite is run. The library

implements spectrum analysis using traditional formula–based methods, as

well as novel rules based on the types and AST structure of the program.

By using a formula–based approach, we can more effectively target program

repair by prioritizing parts of the program that involved in failing tests and

avoiding parts common to all tests.

Program Tracing

Program tracing is a technique based on instrumenting a program and cap-

turingwhich part of the program are evaluatedwhen the program is run (pro-

gram coverage) and, in particular, in which order the expressions in the pro-

gram are evaluated (tracing). This sometimes includes the values involved.

In [15], we introduce CSI: Haskell, which extends GHC’s built–in Haskell

Program Coverage (HPC) to add runtime tracing of Haskell programs. By

collecting a suffix of the trace, we can capture most of the information related

to fault localization, with minimal overhead.
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1.3 Future Work

In this thesis, we present PropR, an automatic repair tool for small Haskell

programs. It works well on small programs that are only an identifier or two

from being correct. However, there is still a long way to go to make it a prac-

tical program repair tool for larger programs and packages with thousands

of lines of code [16].

In this section, we provide a blueprint for how the elements presented

in this thesis can be integrated and combined into a single tool that could

scale much better than the current approach taken by PropR. This tool is

tentatively named PrIM: PropR Improved.

1.3.1 PrIM: PropR Improved

As a step toward practical automatic program repair, we envision an im-

proved version of PropR that draws on the groundwork laid out in this thesis.

In particular, for more practical automatic program repair, multiple compo-

nents are required:

• We must scale the synthesis to not be limited to single identifiers,

• we must be able to repair error–based and non–terminating faults,

• we must more accurately pinpoint parts of the program that should be

targeted for repair, and finally,

• for unit–test–based test suites, we must to enrich themwith property–

based tests to better capture which parts are at fault and which parts

are not.

Integrating ECTA–based synthesis.

In the current design of PropR, valid hole–fits are generated using a hole–

fit plugin that uses both the valid hole–fits as suggested by GHC, as well

as expressions extracted from the module being repaired. While refinement

hole–fits allow us to iteratively synthesize multi–identifier expressions, it is

slow in practice. However, we can build on our work from Spectacular [18]

(presented in chapter 4 in this thesis), which uses a hole–fit plugin to query

GHC for the local and global context of a hole and constructs an ECTA using

identifiers from said context. The ECTA is then used to synthesize expres-

sions that match the type of the hole [18]. By integrating ECTA–based syn-

thesis into the hole–fit synthesis step ( 7 in figure 1.11) we can make more
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Figure 1.11: The PropR test–localize–synthesize–rebind loop

multi–identifier candidates available. This would make the repair process

faster, both due to the higher–quality candidates, and removing the need to

use the slower refinement–hole fit process to synthesize bigger expressions,

relegating those to the ECTA instead.

Using the equivalence class–based bucketing in Spectacular, we can en-

sure that we only test unique candidates. Instead of evaluating both [] ::

[Int] and tail [1] :: [Int], we can choose the simplest one, [], and

discard the others. Although less useful for small expressions, this shrinks

the search space for larger expressions.

Integrating Fault Localization.

In step 5 of the PropR repair loop, PropR runs the program and naively

localizes the fault to any location touched by a failing test. Although guar-

anteed to produce a set of locations that contains the fault, we can do better.

To more accurately pinpoint parts of the program that should be targeted, we

must improve fault localization and introduce more sophisticated heuristics.
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3 gcd' :: Int -> Int -> Int

4 gcd' 0 b = gcd' 0 b

5 gcd' a b | b == 0 = a

6 gcd' a b =

7 if (a > b)

8 then gcd' (a - b) b

9 else gcd' a (b - a)

Figure 1.12: A gcd function that loops indefinitely due to a buggy base case.

Rewritten in Haskell from a GenProg example [23].

CSI: Haskell Error–based and non–terminating faults can be difficult to

repair, since the program halts in an unfinished state and does not produce

any output apart from the error. However, being able to capture what was

being evaluated right before the error occurred and observe the control–flow

of non–terminating loops lets usmore effectively handle these types of faults.

Using a version of GHC that implements CSI: Haskell, we can produce a trace

of the code involved in the failing test. This can be especially useful for faults

such as the non–termination in gcd' in figure 1.12, where the first base case

is incorrect. Instead of returning b in the gcd' 0 b case, it instead loops

without doing any work.

Ex: Killed
CallStack (from HasCallStack):
error, called at Ex.hs:19:72 in main:Main

Recently evaluated locations:
Ex.hs:14:78-14:85 "Killed"
Ex.hs:14:71-14:86 (error "Killed")

Previous expressions:
repeats (60 times in window):
Ex.hs:4:1-9:23 Main:gcd'
Ex.hs:4:12-4:19 ... = gcd' 0 b

There were 38347886 evaluations in total but only 250 were recorded.
Re-run again with a bigger trace length for better coverage.

Figure 1.13: The trace generated from running gcd' 0 55, with signal han-

dler to kill the program and produce an error.

As captured by the suffix of the trace, the base case loop is clear: as seen

in figure 1.13 it is the whole trace! Using this information to guide the search

to focus on the base case, we could repair gcd' much more quickly than we

are able to today.
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As shown in chapter 5 in this thesis, the source of a fault is often in the top

250 locations in the trace [15]. This is spurred by the fact that Haskell is lazy,

meaning that incorrect values involved in an error are often produced right

before the error occurs, allowing us to observe the production of said values

in the trace [15]. By using the location in the trace as a base for a heuristic

for which locations we target first, we would speed up the automatic repair.

Functional Spectrums While the naive approach of considering every lo-

cation involved in a fault as a likely culprit is guaranteed to work, it means

that the search space can become very large. Using the techniques described

in chapter 6 in this thesis to generate a spectrum from the test suite in fig-

ure 1.14, we can more accurately pinpoint the fault. This spectrum captures

that while the first test case does not involve the faulty base cases passes, the

test case that only involves the base case fails.

prop_1 = gcd' 1071 1029 == 21

prop_2 = gcd' 0 55 == 55

Figure 1.14: Tests involving gcd' function in figure 1.12

Table 1.1: A spectrum from running the test suite in figure 1.14, with a time-

out of 0.5 seconds.

name result Ex.hs:4:17 4:19 4:12-19 5:12 5:17 5:21 ...

prop_1 True 0 0 0 28 28 1 ...

prop_2 False 209562382 209562382 209562382 0 0 0 ...

As seen in table 1.1, it is clear that the fault lies in 4:12–19. Using clas-

sical spectrum–based fault localization algorithms, this would assign a high

suspiciousness score to the faulty base case, and guide the search towards

the faulty expression faster than otherwise.

Improved Repair of Under–Specified Programs.

It is often the case that a module or part of a module is under–specified but

is involved in a failure. Even if there is some specification in the form of unit

tests, we can potentially get better coverage by generating property–based

tests, which would improve the spectrums that we generate. If we have an

older version of the source code or a reference implementation that does not

have the bug, we can use Spectacular [18] to synthesize a specification of

the correct version. The synthesized specification can then be used for fault

localization and repair of the later, buggy version.
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Evaluation

If we had all these components in place, I believe that we could scale PropR to

work on much larger programs. One critique of the PropR paper was that the

student dataset used to evaluate was not representative of actual programs.

Originally chosen due to the availability of a comprehensive test suite and

of data points close to a correct implementation, it did not accurately reflect

real–world Haskell code. Since then, the HasBugs dataset by Applis et al. has

become available [3].

Similar to the Defects4J dataset for Java [21], the HasBugs dataset in-

cludes data points fromHaskell projects such as HLS, Cabal, and Pandoc, and

includes descriptions of the bugs, fault locations, locations where fixes were

applied, and tests that cover the bugs. By using the HasBugs dataset instead

of the student dataset, we could more accurately evaluate the effectiveness

of the PropR approach on real–world, large–scale Haskell programs.

Another dataset that could be useful is the Nofib–Buggy dataset [36].

Nofib–buggy consists of programs from the nofib test suite used to bench-

mark and regression test GHC, but with bugs intentionally introduced. This

dataset is useful for evaluating fault localization tools; however, the programs

do not include an extensive test suite, but rather a simplistic suite consisting

of a scripted unit test with no properties. By writing a test suite we could

use nofib–buggy to evaluate automatic program repair tools, and evaluate

the effectiveness of the Spectacular approach, by bootstrapping a test suite

from the non–buggy version of the program as a reference implementation.

1.3.2 Re–Thinking Compiler Design

In this thesis, I have already shown how program repair can work for small

functional programs. However, scaling this up to larger programs is a chal-

lenge. This has prompted some ideas for improvements to theHaskell toolchain

to better enable tools such as those described in this thesis.

Infrastructure

A big part of the problem boils down to infrastructure: Most production code

is not written as one large module but spread out over multiple modules and

multiple packages. Compiling and recompiling these after changes are made

takes a lot of time, and running the test suite takes even longer. The approach

we have taken to program repair relies on rapid turnaround in order to be

able to check each guess before moving on to the next. This can be paral-

lelized and run in multiple processes, but the resources and time required to

repair large programs at scale are generally not accessible to your standard
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programmer. Better support for incremental compilation would greatly im-

prove this situation, allowing us to only recompile the parts of the module

that changed and only rerunning the tests impacted by the change. The ap-

proach taken by Unison [2] is a promising step in this direction. In Unison,

functions are compiled and stored in a database, with references to other

functions stored as indexes to entries in this database. This allows Unison

to avoid recompilation of the whole package and instead only recompile the

function that was changed [2].

Loss of Context

A common detriment to program synthesis is the loss of context. When syn-

thesizing, you want to have as much context as possible, as synthesis is es-

sentially a function of a context to a guess.

Compilers like GHC tend to work on the notion of building up context

during each compilation pass, only to erase most of that context once the

compilation pass has finished. This means that synthesizers have to redo a

lot of type checking and context building done by the compiler, or, as I have

done in this thesis, integrating the synthesis into the compiler pass itself.

This comes at a cost: any time you want to re–run the synthesis, you have

to start compilation all over again to access the context, and threading the

previous context throughout the compilation passes in case it is useful for

later validation and synthesis.

If we could preserve and make each context available to external tools,

that would greatly improve the synthesis and repair process. One way of

doing so would be to take snapshots at certain points of the compilation

that could be used to restart compilation or access the context at that point.

Another way would be to parameterize compilation over a certain location

allowing us to modify that location and only recompile the changed parts.
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1.4 Conclusion

By bringing together all the components of fault localization, targeted syn-

thesis, and efficient ECTA–based synthesis into a practical program repair

loop like PropR, we have shown that the additional specification found in

test suites and rich typing information available in languages like Haskell

can be used to go beyond just verification and that we can use this informa-

tion to aid programmers during development.
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1.5. Thesis structure

1.5 Thesis structure

This thesis builds on the work frommy licentiate (mid–term) thesis [14], and

contains some overlap in the first three chapters. The first chapter (introduc-

tion) has been reworked and extended with future work and a relevant new

background section. The second chapter (suggesting valid–hole fits) is un-

changed and represents the published version of the paper. The third chapter

has been updated to reflect the final camera–ready version of the paper.

Valid Hole–Fits
Spectacular

CSI: Haskell

PropR

Functional Spectrums

PrIM: PropR Improved

(Future Work)

Figure 1.15: Thesis Structure Overview

Paper 1:
Suggesting Valid Hole Fits for Typed–Holes (Experience Report) [11]

by Matthías Páll Gissurarson

Suggesting Valid Hole Fits documents the implementation and design of

the synthesis of valid hole–fits as they initially appeared in GHC. Of particu-

lar interest is the sorting of hole–fits by "relevance", using either the simplis-

tic number of type constructors (the "size" of the type) heuristic, the more

advanced subsumption sorting, where more "specific" types are treated as

more "relevant" than more general types, and refinement hole–fits that are

valid hole–fits that introduce additional holes to be filled.

Statement of contributions Single authored

Appeared in: Haskell Symposium 2018 (Haskell ’18)
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Paper 2:
PropR: Property–Based Automatic Program Repair [17]

byMatthías Páll Gissurarson, Leonhard Applis, Annibale Panichella,
Arie van Deursen, and David Sands

In the PropR paper, we introduce PropR, a tool to automatically repair Haskell

programs using a combination of typed–hole synthesis to repair program ex-

pressions with well–typed replacements and using QuickCheck properties to

verify the repair. We use GHC’s Haskell program coverage functionality to

figure out which expressions are involved in a fault based on QuickCheck

generated counterexamples to failing properties, a typed–hole valid hole–

fit plugin to generate well–typed replacements as fixes for said expressions,

and a genetic algorithm to select and combine fixes based on QuickCheck

property results after applying a fix.

Statement of contributions I was the main driver behind the paper in

conjunction with Leonhard Applis, who was the joint first–author. I imple-

mented the synthesis and repair as well as writing the technical section of

the paper and parts of the introduction, whereas Leonhard focused on the

genetic repair algorithm and the experimental verification.

Appeared in: International Conference on Software Engineering 2022

(ICSE ’22) – Technical Track

Paper 3:
Spectacular: Finding Laws from 25 Trillion Programs [18]

by Matthías Páll Gissurarson, Diego Roque, and James Koppel

Spectacular is a new tool for automatically discovering candidate laws for

use in property–based testing. Incorporating many of the ideas from Quick-

Spec, but using the recently developed technique of ECTAs, Spectacular can

explore vastly larger, fully polymorphic program spaces efficiently.

Statement of contributions I wrote the implementation of Spectacular

and evaluation, while Diego Roque provided some initial exploration of the

problem and James Koppel provided guidance on the use of ECTAs.

Appeared in: International Conference on Software Testing 2023

(ICST ’23) – Research Track
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Paper 4:
CSI: Haskell – TracingLazyEvaluations in a Functional Language [15]

by Matthías Páll Gissurarson and Leonhard Applis

In CSI: Haskell, we extended the Haskell Program Coverage implementation

in GHC to enable runtime tracing of Haskell Programs. In the paper, we

focus on the suffix of such traces and investigate how effective at pointing to

faulty locations in the nofib–buggy dataset they are.

Statement of contributions Both authors contributed equally to the pa-

per. I forked GHC and HPC and did the initial idea and design of the problem

and assisted with the analysis on the nofib–buggy data set.

Appeared in: Symposium on Implementation and Application of Functional

Languages 2023 (IFL ’23), andwas awarded the Peter Landin Prize for the best
paper presented at the symposium as selected by the program committee [1].

Paper 5:
Functional Spectrums – Exploring Spectrum–Based Fault Localiza-
tion in Functional Programming [16]

byLeonhardApplis,Matthías Páll Gissurarson, andAnnibale Panichella

In Functional Spectrums, we implemented an additional pass to the Tasty

test framework and associated GHC plugin to create typed–augmented spec-

trums for fault localization for functional programs. In the paper, we inves-

tigate how effective this approach is for the HasBugs data set.

Statement of contributions Both first authors contributed equally to the

paper. I implemented the ingredient and library that extracts the spectrums,

as well as the GHC plugin for extracting typing information and most of the

rule–based system for quantifying the various values involved.

Manuscript
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