
ICST, Dublin,
April 18, 2023

Spectacular: Background
• Functional Programming (Haskell)

• Pure by default, state is explicit.
• Great for equational reasoning!

• Metamorphic Testing
• Declare what you want to test, not how.
• Targets the oracle problem.

• QuickCheck
• Uses generators to test properties (test oracles!)
• E.g., reverse (reverse xs) == xs

• QuickSpec
• Generates QuickCheck properties!

Spectacular: Motivation
• Test-suites are often lacking

• Property-based tests (i.e. metamorphic relations) cover
more, but hard to write and identify

• Synthesizing properties helps!

• Current approaches (like QuickSpec) don’t scale

• But Spectacular does (better)!

Spectacular: Outline

reverse :: [a] –> [a]

(++) :: [a] –> [a] –> [a]

reverse (reverse xs) == xs

reverse (xs ++ ys) ==
reverse ys ++ reverse xs

Spectacular
Signature
Givens

Arbitrary a =>
xs :: [a], ys :: [a], …

For these 2 functions with 2 added givens:
5460 possible programs of size <= 6
Only 128 are well-typed
and 84 are base values!

For 32 functions and 60 added givens:
25 trillion possible programs!

Type-checker
says...

Spectacular:
Generating Terms

xs ✔
ys ✔
reverse xs ✔
reverse ys ✔
reverse (++)? ✖
reverse ++ reverse? ✖

reverse :: [a] –> [a]
(++) :: [a] –> [a] –> [a]
xs :: [a], ys :: [a]

reverse :: [a] –> [a]
(++) :: [a] –> [a] –> [a]
xs :: [a], ys :: [a]

xs ✔
ys ✔
reverse xs ✔
reverse ys ✔
reverse (++)? ✖
reverse ++ reverse? ✖

Spectacular:
Generating Terms

Equality-
Constrained
Tree
Automata

To the rescue!

By combining compact representation
and constraint solving we can efficiently
enumerate well-typed programs!

E
C
T
As

To the rescue!

Spectacular: ECTAs
(Koppel et al., ICFP 2022)
reverse :: [a] –> [a]
(++) :: [a] –> [a] –> [a]
xs :: [a], ys :: [a]

• Uses constraint solving and merging
to guide choices to avoid backtracking

• Allows enumeration of massive sets!

• The key difference from QuickSpec
• Filtering happens before generation!

Spectacular: Testing

xs == ys?
reverse xs == xs?
reverse xs == ys?
xs ++ xs == xs?
reverse (reverse xs) == xs?

Output
as Law

QuickCheck

✖
✖
✖
✖
✔

reverse :: [a] –> [a]
(++) :: [a] –> [a] –> [a]
xs :: [a], ys :: [a]

Spectacular: Uniques

xs == ys? ✖
reverse xs == xs? ✖
reverse xs == ys? ✖
xs ++ xs == xs? ✖
reverse (reverse xs) == xs? ✔

{xs, ys,
reverse xs,
xs ++ xs} :: Set [a]

No need to compare to
reverse (reverse xs) again!

reverse :: [a] –> [a]
(++) :: [a] –> [a] –> [a]
xs :: [a], ys :: [a]

Spectacular: Pruning

xs == ys? ✖
reverse xs == xs? ✖
reverse xs == ys? ✖
xs ++ xs == xs? ✖
reverse (reverse xs) == xs? ✔
reverse (reverse (reverse xs)) == xs?

We can prune every program containing
_ … (reverse (reverse _) anywhere!

{xs, ys,
reverse xs,
xs ++ xs} :: Set [a]

xs is any list!

We generate by size, so we’ll
have seen _ … xs earlier

reverse :: [a] –> [a]
(++) :: [a] –> [a] –> [a]
xs :: [a], ys :: [a]

Spectacular: Generalization

xs == ys? ✖
reverse xs == xs? ✖
reverse xs == ys? ✖
xs ++ xs == xs? ✖
reverse (reverse xs) == xs? ✔
reverse (reverse (reverse xs)) == xs?
reverse (xs ++ xs) == reverse xs ++ reverse xs? ✔

reverse (xs ++ ys) == reverse xs ++ reverse ys? ✖
reverse (xs ++ ys) == reverse ys ++ reverse xs? ✔

Output generalized law

reverse :: [a] –> [a]
(++) :: [a] –> [a] –> [a]
xs :: [a], ys :: [a]

Spectacular: Phasing

Iterative
Discovery

Earlier
Pruning

Generalize
Findings

More
Efficiency

Spectacular: HugeList

Spectacular: Results

Thank
You!

Questions?

pallm@chalmers.se

Iterative
Discovery

Early
Pruning

Generalize
Findings

More
Efficiency

