
SPECTACULAR:
Finding Laws from 25 Trillion Terms

(Extended)
Matthías Páll Gissurarson

Chalmers Institute of Technology
Gothenburg, Sweden
pallm@chalmers.se

Diego Roque
Dark Forest Technologies

New York, USA
diego9627@gmail.com

James Koppel
MIT

Cambridge, USA
jkoppel@mit.edu

Abstract—We present SPECTACULAR, a new tool for auto-
matically discovering candidate laws for use in property-based
testing. By using the recently-developed technique of ECTAs
(Equality-Constrained Tree Automata), SPECTACULAR improves
upon previous approaches such as QUICKSPEC: it can explore
vastly larger program spaces and start generating candidate laws
within 20 seconds from a benchmark where QUICKSPEC runs
for 45 minutes and then crashes (due to memory limits, even on
a 256 GB machine). Thanks to the ability of ECTAs to efficiently
search constrained program spaces, SPECTACULAR is fast enough
to find candidate laws in more generally typed settings than the
monomorphized one, even for signatures with dozens of functions.

I. INTRODUCTION

Testing is the art of checking that a program works in
some scenarios in order to gain evidence that it works in
all. This is especially relevant in the age of LLMs, where
establishing ground-truth to verify auto-generated programs is
important. In its basic form, a developer must manually create
a set of sample inputs and the expected behavior on each.
For 20 years, the Haskell community has boasted their ability
to automate this by writing down just a few properties, and
letting a property-based testing tool [1] generate the inputs
automatically. But this only replaces hard labor with hard
thought: it is still difficult to think of the right properties.

Yet every program implies its set of properties. By gener-
ating and testing a vast number of properties that might hold
for a given program, a developer need merely select from the
smörgåsbord that does hold. This is the idea of QUICKSPEC,
capable of generating interesting properties on numerous data
structures starting with just a list of functions to consider —
so long as that list is small. Beyond the single digits, the
exponential growth overwhelms its search abilities.

We introduce SPECTACULAR, a new tool for automati-
cally discovering program properties which uses advances in
program synthesis to search spaces of candidate programs
which are orders-of-magnitude larger than can be searched
by QUICKSPEC. For example, for the 5 functions and 3

main = tacularSpec [

con "reverse" (reverse :: [a] -> [a]),

con "++" ((++) :: [a] -> [a] -> [a]),

con "[]" ([] :: [a]),

con "map" (map :: (a -> b) -> [a] -> [b]),

con "length" (length :: [a] -> Int),

con "concat" (concat :: [[a]] -> [a]),

con "0" (0 :: Int),

con "1" (1 :: Int) ]

Figure 1: Example signature for SPECTACULAR, presentation
slightly simplified.

reverse (reverse xs) == xs

reverse (xs ++ ys) == reverse ys ++ reverse xs

map f (concat lists) == concat (map (map f)) lists)

length (xs ++ ys) == length xs + length ys

Figure 2: Example laws generated by SPECTACULAR from
the signature in figure 1.

constants in Figure 1, SPECTACULAR finds 60 laws compared
to QUICKSPEC’s 28; even running in a restricted mode, it
still finds more laws than QUICKSPEC in less than half the
time. It does this thanks to its use of the recently-introduced
ECTA (Equality-Constrained Tree Automata) data structure
[2], capable of compactly representing a space of trillions of
possible programs, and efficiently enumerating all the ones
which are well-typed (or satisfy any other property encodable
with equality constraints). The benefits over QUICKSPEC get
larger for larger modules. Thanks to ECTAs and our custom
enumeration, SPECTACULAR can start generating laws within
minutes from the space of all terms up to size 6 on a signature
with 92 functions and constants, a space of over 25 tril-
lion terms, with memory consumption never exceeding 1GB.
QUICKSPEC, on the same benchmark gets stuck enumerating
terms of size 4 and crashes from memory exhaustion after 45
minutes on a machine with 256GB of RAM. And it does all
this in only 1400 LOC, compared to QUICKSPEC’s 8300.For the accepted version ©2023 IEEE. Personal use of this material is
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Figure 3: Representations of 𝒯 = {f(𝑡1) + f(𝑡2)} and 𝒰 = {f(𝑡) + f(𝑡)}, where 𝑡, 𝑡1, 𝑡2 ∈ {a, b, c}.

In summary, this paper makes the following contributions:
∙ An automated program property discovery approach

based on modern program synthesis techniques, specif-
ically ECTAs.

∙ The SPECTACULAR tool, capable of discovering program
properties orders-of-magnitude faster than previous ap-
proaches on large examples. The source is available at
https://zenodo.org/record/7565003 [3], along with scripts
used to generate the benchmarks in the evaluation. Note
that SPECTACULAR itself is in the spectacular sub-folder.

II. BACKGROUND

A. Equality-Constrained Tree Automata (ECTAs)

app fun.targ=arg.type

unary scalar

fun arg

f g h x y

Bool

targ tret

Bool Int

targ tret

Bool Char

targ tret

Int Int Char

type type

Figure 4: ECTA representing all well-typed size-two terms in
the environment Γ1 = {𝑥 : Int, 𝑦 : Char, 𝑓 : Bool → Bool, 𝑔 :
Int → Bool, ℎ : Char → Int}.

Equality-constrained tree automata (ECTAs) [2] are a new
data structure for representing and enumerating a large space
of terms with constraints between subterms. They are most
easily explained as an alternative to e-graphs [4], [5], [6] suit-
able when different subterms cannot be chosen independently.
We begin with a brief discussion of e-graphs; see Willsey et al

[6] for additional background. We will then give an abridged
version of the explanation of ECTAs from [2].

E-graphs = Independence.
Consider selecting a term from some large space of possi-

bilities, where each successive node from the top down is a
distinct choice. E-graphs are a compact representation of such
spaces where each choice can be made independently. For
instance, consider the space 𝒯 = {f(𝑡1)+f(𝑡2)} where 𝑡1, 𝑡2 ∈
𝐶 = {a, b, c}. An e-graph can be constructed by first con-
structing a node "E-class 1" representing the choice {a, b, c},
then a node "E-class 2" representing {f(a), f(b), f(c)}, then a
node "E-class 3" which sums two independent choices drawn
from E-class 2. Figure 3a depicts this e-graph. Though the size
of this space is clearly quadratic in |𝐶|, the size of its e-graph
is linear. Thanks to this ability, e-graphs have seen application
from program synthesis [6], [7] to superoptimization [8] to
semantic code search [9] to theorem proving [4]. E-graphs
are now known [10], [11] to be equivalent representationally
to finite tree automata (FTAs). Figure 3b shows an FTA that
represents the same term space as the e-graph in figure 3a.

Tree Automata.
A finite tree automaton (FTA) consists of states (circles) and

transitions (rectangles), with each transition connecting zero
or more states to a single state. Intuitively, FTA transitions
correspond to e-graph nodes, and FTA states correspond to
e-classes. Importantly, both data structures, along with the
similar version space algebras [12], thrive on spaces where
terms share some top-level structure, while their divergent sub-
terms can be chosen independently of each other.

Challenge: Dependent Joins. Consider now the term space
𝒰 = {f(𝑡) + f(𝑡)}, where 𝑡 ∈ {a, b, c}, that is, a sub-space of
𝒯 where both arguments to f must be the same term. Such
“entangled” term spaces arise naturally in many domains. For
example, in term rewriting or logic programming, we want to
represent the subset of 𝒯 that matches the non-linear pattern
𝑋 + 𝑋 . More relevantly, we want to represent the space of
well-typed Haskell terms, where, in each application, the type
of an argument must equal the parameter type of the function.

Existing data structures are incapable of fully exploiting
shared structure in such entangled spaces. Figure 3c shows an
e-graph representing 𝒰 : here, the + cannot be reused because

https://zenodo.org/record/7565003
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Figure 5: An overview of SPECTACULAR

its children are independent, whereas our example requires a
dependency between the two children of +.

Solution: ECTA. ECTAs address this problem by representing
dependent spaces by tree automata whose transitions can be
annotated with equality constraints. For example, figure 3d
shows an ECTA that represents the term space 𝒰 . It is identical
to the FTA in figure 3b save for the constraint 0.0 = 1.0 on its
+ transition. This constraint restricts the set of terms accepted
by the automaton to those where the sub-term at path 0.0
(the first child of the first child of +) equals the sub-term
at path 1.0 (the first child of the second child of +). The
constraint enables this ECTA to represent a dependent join
while still fully exploiting shared structure, unlike the e-graph
in figure 3c.

Most importantly, ECTAs come equipped with efficient
algorithms for enumerating all terms that satisfy the
constraints based on constraint processing via automata in-
tersection, made available in the optimized ECTA library.

Type-driven Synthesis. A striking example of the power of
ECTAs is HECTARE [2], the main existing application of
ECTAs. HECTARE is designed as a replacement for HOOGLE+
[13], which solves the problem of polymorphic type-driven
program synthesis: given a Haskell type such as (a -> a) -> a

-> Int -> a, intended to take a function 𝑓 and apply it 𝑛 times
to some input 𝑥, it synthesizes a small Haskell program of
this type, included the intended solution \g x n -> foldr ($)

x (replicate n g). HOOGLE+ clocks in at over 4, 000 lines,
using an SMT encoding specifically tuned for this problem.
HECTARE is a measly 400 lines: it constructs an ECTA using

the ECTA library, and simply runs the standard enumeration
procedure. And yet HECTARE is 8× faster.

The SPECTACULAR tool in this paper uses a similar encod-
ing to HECTARE to build an ECTA representing the space of
well-typed Haskell programs of a given signature, but tuned to
the set of types occurring in the functions of interest, and uses
finer-grained enumeration to reduce the number of candidate
terms inspected by over 1000× on some benchmarks.

Figure 4 shows an example of a simplified ECTA for types,
where type variables are restricted to just one of a few base
types. We refer to the ECTA paper [2] for discussion of this
encoding and its generalization to arbitrary polymorphism.

B. QuickCheck and the QuickSpec problem

QuickCheck: is a property-based testing framework that
uses observational equivalence based on generating arbitrary
data and testing to establish the validity of properties [1].

QuickSpec: is a state-of-the-art theory exploration system
for Haskell that uses QuickCheck to automatically generate
laws based on a set of functions called a signature [14].
Originally a naive equation generation system, QUICKSPEC
V2 and onwards uses sophisticated techniques based on enu-
merating terms and schemas in order to quickly explore a
system of equations [14]. We use QUICKSPEC as the gold
standard to compare against in this paper, and many of
the techniques we use in SPECTACULAR are based on the
techniques used in QUICKSPEC, albeit augmented with ECTA.
However, QUICKSPEC does struggle with large signatures, as
we detail further in section IV.
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III. THE SPECTACULAR TOOL

The design of SPECTACULAR is inspired by QUICKSPEC’s
[14] approach of property discovery by finding and maintain-
ing a set of unique terms which are used for comparison
with newly enumerated terms. We emulate QUICKSPEC’s
signature interface for ease of comparison. We use an ECTA
to efficiently represent and enumerate the space of well-
typed terms of increasing size that are compared to each
other to find properties. We make non-trivial changes to the
enumeration of the ECTA to efficiently prune redundant terms,
reducing the amount of terms to be examined. An overview
of SPECTACULAR can be found in figure 5, with an overview
of the loop itself in figure 6. We denote Haskell data types
with red text, a la Type. An example output of SPECTACULAR
is provided in figure 7. Here, x_Int denotes an arbitray Int,
xs_[A] an arbitrary list of As, and so on.

A. Signatures

Users interact with SPECTACULAR by defining a signature
that describe the system of equations that they want to explore.
We give an example signature consisting of a collection of
list functions in figure 1.1 This shall serve as our running
example. Note that SPECTACULAR is capable of handling of
much larger spaces, so it can handle entire modules instead of
just manually-specified signatures.

B. Supplying Givens

To generate and check equations, SPECTACULAR needs to
be able compare values of a given type for equality and to
generate arbitrary values of that type. When compiling Haskell
with GHC, this is done by instance resolution during compile

1The pseudocode in this figure is almost-identical to the real code, which
uses a mechanism to create runtime representations of types and type
variables.

Laws according to Haskell's (==):

---------------------------------

1. 0 == length []

2. [] == reverse []

3. length xs0_<[A]> == length (reverse xs0_<[A]>)

4. xs0_<[A]> == reverse (reverse xs0_<[A]>)

5. [] == ((++) []) []

6. xs0_<[A]> == ((++) []) xs0_<[A]>

7. xs0_<[A]> == ((++) xs0_<[A]>) []

8. [] == (map f0_<A -> A>) []

9. f1_<A -> A> x0_<A>

== f1_<A -> A> (f1_<A -> A> (f1_<A -> A> x0_<A>))

10. length xs0_<[A]>

== length ((map f0_<A -> A>) xs0_<[A]>)

11. (map f0_<A -> A>) (reverse xs0_<[A]>)

== reverse ((map f0_<A -> A>) xs0_<[A]>)

12. length (((++) xs0_<[A]>) xs1_<[A]>)

== length (((++) (reverse xs0_<[A]>)) xs1_<[A]>)

13. reverse (((++) xs0_<[A]>) xs1_<[A]>)

== ((++) (reverse xs1_<[A]>)) (reverse xs0_<[A]>)

14. ((++) xs0_<[A]>) (((++) xs1_<[A]>) xs2_<[A]>)

== ((++) (((++) xs0_<[A]>) xs1_<[A]>)) xs2_<[A]>

15. ((++) (reverse xs0_<[A]>)) xs1_<[A]>

== reverse (((++) (reverse xs1_<[A]>)) xs0_<[A]>)

Fully monomorphic phase finished..199 terms examined.

43 unique terms discovered.

Starting phase with more types....

Monomorphic phases finished..335 terms examined.

50 unique terms discovered.

Starting mono-polymorphic phase....

16. [] == concat []

17. ((++) (concat xs0_<[[A]]>)) (concat xs1_<[[A]]>)

== concat (((++) xs0_<[[A]]>) xs1_<[[A]]>)

18. xs0_<[[A]]> == (map ((++) [])) xs0_<[[A]]>

19. xs0_<[[A]]>

== (map reverse) ((map reverse) xs0_<[[A]]>)

Mono-polymorphic phase done! 1662 terms examined.

96 unique terms discovered.

Starting fully-polymorphic phase....

20. (map f0_<A -> B>) (concat xs0_<[[A]]>)

== concat ((map (map f0_<A -> B>)) xs0_<[[A]]>)

Done! 3558 terms examined.

100 unique terms discovered

Figure 7: Example SPECTACULAR output for terms up to size
5 in 4 phases for the signature in figure 1. in 3.3sec/39MB



CopyProvided Signature:

map :: (a -> b) -> [a] -> [b]

Monomorphize

Phase 1: Monomorphic

map :: (A -> A) -> [A] -> [A]

Generalize

Phase 2:

map :: (A -> B) -> [A] -> [B]

Generalize

Phase 3: Polymorphic, one variable

map :: (a -> a) -> [a] -> [a]

Phase 4: Polymorphic

map :: (a -> b) -> [a] -> [b]

Figure 8: The four phases of SPECTACULAR. Each consecutive phase uses laws and uniques found in the previous phases,
but is slightly more general than the last when it comes to the types it explores.

time to find the corresponding arbitrary data generators and
equality functions, and insert them into the generated code.
However, since SPECTACULAR is generating and evaluating
equations at run-time, the associated instances must be re-
solvable at run-time as well. This means that SPECTACULAR
requires a run-time mechanism for instance resolution for
arbitrary data generators and equalities. This can be done
using the Dynamic datatype, allowing us to look up and store
the associated instances in a data structure at compile-time,
and defer the selection of which instances to use to run-
time. This means that it can test terms without having to
resort to code generation, making the tool simpler and faster.
SPECTACULAR does this by looking at the signature and
generating its universe of types [14], meaning all function
arguments and return types. for figure 1, these would be
[A], [[A]], [B], (A -> B), and Int. This universe is used to
generate the givens for the signature, which are the equality
functions and random variable generators for types in the
universe which can then be looked up at run-time. Generating
the givens at compile-time from the universe of types means
that the users do not have to manually provide these instances,
though it comes with the caveat that types that are not in the
signature are not considered synthesis targets.

C. Enumerating Terms

An efficient way to explore the space of equations is
to enumerate terms instead of equations themselves [14].
However, it is important to enumerate only well-typed terms.
For example, for the terms reverse :: [a] -> [a] and (++)

:: [a] -> [a] -> [a] with added givens xs :: [a] and ys ::

[a], there are 5460 possible programs of size ≤ 6 of which
only 128 are well-typed and 84 are base values!

ECTAs: To efficiently represent the space of well-typed
Haskell terms of a given type, SPECTACULAR constructs an
ECTA for a fixed size 𝑛. The ECTA library provides an

efficient interface for enumeration. It conceptually provides
the following API:
partiallyEnumerate :: ECTA -> PartiallyEnumeratedTerm

where a partially-enumerated term can be thought of as a
template like map _ (reverse _), where the two underscores
stand for ECTAs representing some smaller space of terms2.
This allows SPECTACULAR to decide whether to expand or
discard a branch (see section III-D).

Phasing: Ordering is important when generating laws. As
a simple example, if the tool discovers reverse (reverse x)

== x early, large swaths of the search space need not be
enumerated at all, and undesired redundant rules such as tail

(reverse (reverse x)) == tail x will not be generated. To
increase efficiency, and to provide the user results immediately,
SPECTACULAR splits its search into several phases, each
using a larger search space than the previous. Each phase is
further stratified by size, guaranteeing that smaller terms are
discovered before larger. An overview is provided in figure 8.

1) Monomorphic: The first phase monomorphizes all types
representing type variables, so that b, c, and d all become
the concrete type A, where A is an arbitrary constant
type. For example, the function map :: (a -> b) -> [a]

-> [b] from figure 1 is monomorphized into map :: (A

-> A) -> [A] -> [A]. This yields a very small search
space, enumerable in seconds. Searching this space first
allows SPECTACULAR to discover rewrites that allows ag-
gressive pruning in later phases. This phase can discover
rules such as reverse (reverse xs) == xs.

2) Uninterpreted: The second phase replaces all type vari-
ables with distinct constant types (such as A and B). This
means that map :: (a -> b) -> [a] -> [b] is specialized

2Partially-enumerated terms also store equality constraints between the
unenumurated parts; in this case, that the argument type of map’s first argument
must match the element type of the list in the second argument.



into map :: (A -> B) -> [A] -> [B]. This phase does
not generally result in many laws, but does discover a
few unique, previously unseen terms from the new types,
such as snd (x_A,x_B) :: B, used in later phases.

3) Single-variable polymorphism: This phase replaces all
type variables with the single type variable a, but treats
this variable as standing for an arbitrary type. For ex-
ample, map :: (a -> b) -> [a] -> [b] becomes map ::

(a -> a) -> [a] -> [a]. Unlike in the previous phases,
this time it contains a proper type variable, a. This
is the approach taken in QUICKSPEC [14], and allows
SPECTACULAR to find most of the laws, unless they
require more than one type variable. An example law
first discovered at this phase is reverse (concat reverse

xs) == concat (map reverse xs).
4) Arbitrary polymorphism (optional): This phase gen-

eralizes all the type variable representing types in
the signature into type variables. This means that
map will have the polymorphic type map :: (a -> b)

-> [a] -> [b]. This phase is not run by default be-
cause of the vast size of the search space. When run-
ning this phase on large term sizes, progress grinds
to a halt. An example of a law first discovered at
this phase is concat (reverse (map reverse lists)) ==

reverse (concat lists). Finding this is harder in a
monomorphic setting: when map :: (a -> b) -> [a] ->

[b] becomes monomorphized to map :: (a -> a) -> [a]

-> [a], the argument function f must have the same input
and output type, f :: a -> a. But the function concat ::

[[a]] -> [a] returns a different type than its input.

D. Pruning

The key to efficient exploration of the equation space is
the pruning that SPECTACULAR applies directly in the ECTA
during enumeration. As described in section III-C, ECTA
enumeration is based on a loop that does repeated expansion
of partially-enumerated terms, which are terms for which there
are still some choices to be made. The enumeration runs
in a monadic environment that captures the branching that
happens during enumeration when choices are made. This
means that It is helpful to avoid exploring branches known to
only contain terms containing a sub-term that can be rewritten.
As an example, if the tool has previously discovered that x ==

reverse (reverse x), it can discard any partially-enumerated
terms containing reverse (reverse _), since any such term
is equivalent to the smaller term containing just x. Choosing
the right pruning strategy is important, we want to be as
aggressive as possible while still being sound, in order to find
all the relevant equations without having to enumerate and
check an intractable amount of terms. In SPECTACULAR, the
pruning strategy is based on matching the non-unique terms
that SPECTACULAR has discovered up until that point (i.e.
terms that are equivalent to any of the unique terms) with the
partial terms being enumerated. These non-unique terms are
either direct rewrites of an expression (such as reverse [] =>

[]), or include a variable, e.g. xs ++ [] => xs.

Matching partial terms: A partial term matches another
term when the top-level symbol are the same and all of
their sub-expressions are the same. However, it might be the
case that some sub-expressions of the partial term are not
enumerated yet. In that case, SPECTACULAR suspends the
pending sub-matches, and runs them whenever the pending
partial term gets enumerated, allowing the pruning of the
branch as soon as SPECTACULAR knows enough about any
of the partial terms to make the decision that this branch will
not be productive. Enumeration of a term always starts from
the top-down, so most of the time the pending matches are
suspended on any of the sub-expressions of the top-level term.
When a match is found, SPECTACULAR immediately stops
enumeration of that branch, and continues with the next one.

E. Interleaving Testing and Enumeration

For freshly generated terms, SPECTACULAR starts by trying
to rewrite it to a smaller term using the previously-discovered
equations. Since it explores the space of terms in order of
size, the existence of a rewrite to a smaller term means that
an equivalent term has already been inspected, and thus any
laws using the larger term would be redundant. The larger term
can thus be discarded. A lot of the performance comes from
being able to discard a term before it is tested or even before
it is generated. By interleaving testing and enumeration [14],
SPECTACULAR can learn rewrites that allow it to prune more
aggressively, making it a lot more efficient than generating
all the terms at once and then start testing. In SPECTACULAR,
this is done by generating terms in batches, and generating and
testing all terms of a given type and size before proceeding
to the next one. This allows us to learn all the rewrites for
a certain size before proceeding to a bigger size, and so
SPECTACULAR can prune aggressively when we know a sub-
term has a rewrite. Generating per type is also beneficial,
since SPECTACULAR might generate the same expression at a
different type multiple times (e.g. [] == [] ++ [] :: [a], []

++ [] :: [Int], etc.). By learning the rewrite for one type and
generalizing it, SPECTACULAR can prune those expressions at
other types.

F. Testing of Terms

SPECTACULAR tracks a set of unique terms of each type
that are not morally equivalent [15] to any other term SPEC-
TACULAR has encountered so far. When a new candidate term
has been generated, SPECTACULAR tests it against all the
other unique terms we’ve discovered of that type. Let xs ::

[a] be the unique term and xs ++ [] be the candidate term.
By using the generated equality instance SPECTACULAR can
construct the term representing the equality xs == xs ++ [].
Once we have a term, we have to turn it into a Property

that we can test using QuickCheck. Using the equality and
random variable generators from the given we generated
from the signature, we have all the components of the term
represented as Dynamic instances. This means that we do not
need to do any compilation or code-generation step, we can
immediately use the random variable generators to generate



variable assignments, and apply the dynamic representations
of the functions and equality to generate the Property.

Implementation: To do this, SPECTACULAR generates a
Dynamic containing a Property. It then generates a variable
assignment for every variable in the expression, making sure
that the same variable gets the same value, no matter how
many copies there are in the expression. A specific GADT
is needed to represent the Dynamic generator, since we must
ensure that the generated values are Typeable, so that we
can wrap them in Dynamic once they’ve been assigned. The
function then generates the Dynamic representation of each of
the sub-expressions, by looking up the value in the variable
assignment map or looking up the Dynamic representation of
the function from the signature. To support the monomor-
phization of the type variables, we need to use a function
that circumvents the checks done by Dynamic at run-time, so
that e.g. A can be used in place of B. A and B and other type
variable representatives are defined as data A = A Any, and
so can be safely coerced between. Since we only synthesize
well-typed expressions, we know these coercions are safe. By
generating a Dynamic representation of the property this way,
we can efficiently test equations for validity.

G. Generalization of Laws

To reduce the search space even further, SPECTACULAR
only enumerates terms with the one variable for each type,
and reuses that variable whenever a variable of that type is
needed. This means that when we generate the associativity
check, it will be discovered as (xs ++ xs) ++ xs == xs ++

(xs ++ xs) This is based on the observation that [14] if an
equation holds for any arbitrary xs and ys, it must in particular
also hold whenever xs == ys. This means it suffices to explore
terms with however many copies of the same variable, (xs
in our example) and then to generalize the law once found.
To generalize a law, SPECTACULAR generates all possible
variations of the law by renaming each variable and adding
more variables as needed. This would generalize the trivial
law (xs ++ xs) ++ xs == xs ++ (xs ++ xs) to

∙ (xs ++ xs) ++ ys == xs ++ (xs ++ ys),
∙ (xs ++ ys) ++ xs == xs ++ (ys ++ xs), and also
∙ the actual law: (xs ++ ys) ++ zs == xs ++ (ys ++ zs).

We make sure to generate these laws so that the variables
are always in the same order to avoid duplicates and remove
the ones that are equivalent up to renaming, We then test
the most general law first (the one with the most variables)
and so on until we find a law that hold (if none is found,
the original law is the most general). This way we use
variables as a limited form of schemas [14]. When a law
has been discovered, its most general form is reported, and
SPECTACULAR continues until all the phases are finished for
all types and type constructors.

IV. EVALUATION

We evaluate the performance of SPECTACULAR against
QUICKSPEC. We match the parameters when possible in both
tools. We take the examples from the QUICKSPEC repository,

including two shown in the paper, and adapt them to SPEC-
TACULAR. This involves removing any QUICKSPEC specific
options from the signatures, and adding implementations of
random data generators of the user-provided types defined by
the example so that we can run QuickCheck.

These tests were run on a cloud-based machine with 32GB
of RAM and 6 Intel Xeon E312xx @2GHz 64bit vCPUs.

The signatures we consider are as follows:

∙ Lists: The signature shown in figure 1, repeated here. All
involving basic list functions. This has 6 components.
main = tacularSpec [

con "reverse" (reverse :: [a] -> [a]),

con "++" ((++) :: [a] -> [a] -> [a]),

con "[]" ([] :: [a]),

con "map" (map :: (a -> b) -> [a] -> [b]),

con "length" (length :: [a] -> Int),

con "concat" (concat :: [[a]] -> [a]),

con "0" (0 :: Int),

con "1" (1 :: Int) ]

∙ Octonions: This example defines an octonion data type
and an Arbitrary instance for it. The signature is then
defined as below, and has 3 components:
main = tacularSpec [

con "*" (* :: Oct -> Oct), -- product

con "inv" (recip :: Oct -> Oct) -- inverse

con "1" (1 :: Oct)] -- identity

∙ Regex: This example defines a Regex algebra, including
an equality based on NFAs, and the signature contains
the standard Kleene operations. This has 7 components.
main = tacularSpec [

con "char" (Char :: Sym -> Regex Sym),

con "any" (AnyChar :: Regex Sym),

con "e" (Epsilon :: Regex Sym),

con "0" (Zero :: Regex Sym),

con ";"

(Concat :: Regex Sym -> Regex Sym -> Regex Sym),

con "|"

(Choice :: Regex Sym -> Regex Sym -> Regex Sym),

con "*" (star :: Regex Sym -> Regex Sym)]

∙ ListMonad: This signature contains the basic monad
functions instantiated for List, as well as concatenation.
This has 4 components.
main = tacularSpec [

con "return" (return :: A -> [A]),

con ">>=" ((>>=) :: [A] -> (A -> [B]) -> [B]),

con "++" ((++) :: [A] -> [A] -> [A]),

con ">=>"

((>=>) :: (A -> [B]) -> (B -> [C]) -> A -> [C]) ]

∙ HugeLists: The benchmark from the QUICKSPEC paper,
mentioned in the abstract, consisting of 33 list functions
from Prelude, ranging from standard functions such as
length, to more exotic functions like (>=>), as well as
some internal functions from QUICKSPEC like usort that
uses a different implementation of sort. See figure 11 for



Spec Tool Time (s) Memory Laws

L
is

ts
SPECTACULAR (P2) 3.54 21.4 MB 32

QUICKSPEC 8.55 100.2 MB 28
SPECTACULAR (P3) 55.44 88.7 MB 73
SPECTACULAR (P4) 105.25 155.34 MB 93

O
ct

on
io

ns

SPECTACULAR (P2) 0.63 19.9 MB 8
SPECTACULAR (P3) 0.76 20.9 MB 8
SPECTACULAR (P4) 0.92 21.1 MB 8

QUICKSPEC 0.97 20.3 MB 15

R
eg

ex

SPECTACULAR (P2) 10.64 16.9 MB 42
SPECTACULAR (P3) 14.83 17.2 MB 42
SPECTACULAR (P4) 19.5 17.3 MB 42

QUICKSPEC 458.9 88.9 MB 64

L
is

tM
on

ad SPECTACULAR (P2) 0.90 15.3 MB 8
SPECTACULAR (P3) 1.85 22.7 MB 8

QUICKSPEC 2.44 30.5 MB 11
SPECTACULAR (P4) 53.56 213.7 MB 42

H
ug

eL
is

ts
(3

)

SPECTACULAR (P2) 0.30 11.7 MB 22
SPECTACULAR (P3) 0.68 15.8 MB 27
SPECTACULAR (P4) 2.12 29.2 MB 33

QUICKSPEC 251.4 160 MB 49

Spec Tool Time (s) Memory Laws

H
ug

eL
is

ts
(4

)

SPECTACULAR (P2) 0.73 13.8 MB 37
SPECTACULAR (P3) 4.43 35.9 MB 68
SPECTACULAR (P4) 91.13 125.3 MB 90

QUICKSPEC >3600 12.3 GB -

H
ug

eL
is

ts
(5

)

SPECTACULAR (P2) 2.92 23.4 MB 66
SPECTACULAR (P3) 83.7 106.9 MB 144
SPECTACULAR (P4) >3600 301.3 MB -

QUICKSPEC >3600 12.7 GB -

H
ug

eL
is

ts
(6

)

SPECTACULAR (P2) 20.70 40.2 MB 99
SPECTACULAR (P3) 3164.75 434.4 MB 211
SPECTACULAR (P4) >3600 434.4 MB -

QUICKSPEC - - -

H
ug

eL
is

ts
(7

)

SPECTACULAR (P2) 201.51 54.6 186
SPECTACULAR (P3) >3600 383.2 -
SPECTACULAR (P4) >3600 381.4 -

QUICKSPEC - - -

Table I: Performance of SPECTACULAR against QUICKSPEC. Here (Pn) refers to until what phase we run SPECTACULAR.
Note that we did not attempt running QUICKSPEC on HugeLists (6) and (7), due to the timeout already being hit in (5).
Due to different patterns of exploration, SPECTACULAR and QUICKSPEC sometimes disagree on the number of laws. One
example is in HugeLists, SPECTACULAR finds that sort from the prelude is the same as usort from the QUICKSPEC internals
used in the benchmarks. SPECTACULAR thus discards any laws that mention usort in favor of sort, whereas QUICKSPEC
does not, and reports additional laws involving usort. However usort == sort is not a true equivalence, since usort discards
duplicates! In this case, the underlying arbitrary data generator does not generate duplicate elements so SPECTACULAR reports
this as a law. This highlights the fact that care must be taken to interpret the “laws” only in the context of their generators.
A timeout is denoted with (>3600), and the maximum resident memory of the process up to that point is given, e.g. 12.3 GB
for QUICKSPEC on HugeLists (4). The benchmarks used are taken from QUICKSPEC, generated using the benchmark script
in https://zenodo.org/record/7565011 [16].

the spec itself.
On both tools we look for terms of size up to 7, unless a

particular size is specified in parenthesis next to the signature.
We stopped the execution in the experiment at 3600 seconds,
though on a different machine QUICKSPEC did finish for
HugeList (4) in 38 minutes, whereas HugeLists (4) P4 took 9
seconds on the same machine.

A. Improvements upon QUICKSPEC

Performance: As seen in table I and figure 10, SPECTAC-
ULAR is generally faster than QUICKSPEC, and consistently
using less memory. This difference is more stark when scaling
the size of terms we look for and the size of the signature, as
we can see in the HugeLists benchmark.

The memory improvement as seen in figure 9, in particular
on the examples with larger signatures, makes it feasible to
run on bigger sizes in a memory constrained environment,
like cloud instances where memory rather than time is more
expensive. It also shows that the limiting factor for SPECTAC-
ULAR is time and not memory requirements.

Running SPECTACULAR until phase 2 gives adequate per-
formance, with the trade-off being fewer laws. Each subse-
quent phase is more expensive but often returns new kinds of
laws. We also see that for the cases where polymorphism isn’t
present (Octonions and Regex), the performance penalty with
respect to phase 2 is reasonable. A non-trivial law like length

(concat xs) == sum ((map length) xs) (HugeLists (4)) can
be discovered in < 30 seconds by SPECTACULAR but takes
an hour or more in QUICKSPEC. Being able to control which
parts of the type space to explore makes users of SPECTAC-
ULAR able to adapt the search to their specific requirements.

Scalability: As stated before, the biggest difference in per-
formance happens with HugeLists. Under similar parameters
to QUICKSPEC, SPECTACULAR completes its search in less
time and with less memory. This gives evidence that SPEC-
TACULAR scales better than QUICKSPEC. In particular, the
memory consumption does not blow up like in QUICKSPEC.
In a different test, done with a x2gd.4xlarge AWS instance3,

3x2gd.4xlarge instances have 16 2.5GHz vCPUs and 256GB of RAM

https://zenodo.org/record/7565011


Figure 9: HugeList memory use

SPECTACULAR generated properties for HugeLists (6) within
half a minute for P2. On the other hand, QUICKSPEC ran
out of memory while generating terms of size 4 after 45
minutes. For P2, SPECTACULAR even manages to finish for
the default term size 7, whereas QUICKSPEC does not return
any properties for terms bigger than 4.

Differences in Discovered Laws: QUICKSPEC does have
an advantage when it comes to the heuristics it uses dur-
ing exploration, allowing them to quickly find laws like
commutativity, associativity and distributivity, using hard-
coded heuristics during the search phase and generalizing
templates such as (_ + _) [14]. This is particularly important
for specifications such as the Octonions, where these form
a majority of the laws, allowing QUICKSPEC to find laws
beyond the term size using these heuristics as a guide. These
are laws with multiple variations like (x*x)*y = (x*(x*y))

and (x*y)*x = x*(y*x), whereas SPECTACULAR finds only
x*(x*y) = (x*x)*y. SPECTACULAR does perform better for
cases like Lists, where SPECTACULAR finds laws such
as reverse (concat xss) == concat (map reverse (reverse

xss)), concat (concat xsss) == concat (map concat xsss),
and map length xss == map length (map (map f) xss) which
QUICKSPEC does not, though the difference in could be
explained by the tactics used for search space enumeration
and merging of laws.

V. RELATED WORK

The story of QUICKSPEC and its offshoots is often told
narrowly: it extends property-based testing. But automatically
discovering useful laws has far greater reach. In this section,
we discuss both immediately-related work in property-based
testing and program synthesis, and similar techniques used in
math, physics, and other parts of computer science.

Property-Based Testing (PBT): Property-Based Testing
[17] is the checking of software correctness by finding proper-
ties that should hold of a correct implementation and gathering
evidence they hold, often by random testing [1]. It has vast
research literature and multiple industrial libraries [18], [19].

Figure 10: HugeList compute time

In Haskell, it was popularized by QuickCheck [1], and adopted
as a golden standard for testing libraries.

Synthesis of PBT Properties: The pioneer in the prob-
lem of automatically generating properties for property-based
testing is QUICKSPEC [20], [14]. It has been applied to
lemma discovery in automated theorem proving [21], [22], and
extended with mutation-testing [23] and the ability to discover
inequalities and conditional laws [24], [25]. Variants have also
been implemented using comparison of symbolic rather than
concrete terms [26], [27].

Data-Driven Invariant Generation: In pure functional
programming, data from random testing can only be collected
about the final output of a term. In imperative programming,
such data can also be collected about the intermediate states
of a function, and used to suggest invariants that hold at that
point. This is the idea of Daikon [28].

Daikon has spawned a massive amount of follow-up re-
search as well as three for-profit companies (most notably
Agitar [29]). Of special relevance, Daikon-like techniques have
been used to discover properties used in program verification,
namely loop invariants [30] and simulation relations for equiv-
alence checking [31]. Do note that Daikon-like techniques are
primarily restricted to properties that hold of a single func-
tion, while property-based testing is primarily concerned with
hyperproperties/hypersafety, comparing multiple programs.

Symbolic Regression: Symbolic regression [32] is the
problem of finding the best mathematical formula to fit a
dataset. It has been used to generate equations defining math-
ematical constants [33], physical laws [34], and conjectures
over generalized integers [35]. Notable recent work exploits
symmetry and learned features for inductive bias, discovering
a great number of famous physics formulas. [36], [37].

Of less relevance to this work is the field sometimes called
Automated Theorem Discovery, developing systems which
propose mathematical theorems by means other than data [38],
[39], [40], [41], [42].

Enumerative Program Synthesis: Both SPECTACULAR
and QUICKSPEC are enumerative program synthesizers, em-



main = tacularSpec [

con "length" (length :: [A] -> Int),

con "sort" (sort :: [Int] -> [Int]),

con "scanr"

(scanr :: (A -> B -> B) -> B -> [A] -> [B]),

con "succ" (succ :: Int -> Int),

con ">>=" ((>>=) :: [A] -> (A -> [B]) -> [B]),

con "snd" (snd :: (A, B) -> B),

con "reverse" (reverse :: [A] -> [A]),

con "0" (0 :: Int),

con "," ((,) :: A -> B -> (A, B)),

con ">=>"

((>=>) :: (A -> [B]) -> (B -> [C]) -> A -> [C]),

con ":" ((:) :: A -> [A] -> [A]),

con "break"

(break :: (A -> Bool) -> [A] -> ([A], [A])),

con "filter" (filter :: (A -> Bool) -> [A] -> [A]),

con "scanl"

(scanl :: (B -> A -> B) -> B -> [A] -> [B]),

con "zipWith"

(zipWith :: (A -> B -> C) -> [A] -> [B] -> [C]),

con "concat" (concat :: [[A]] -> [A]),

con "zip" (zip :: [A] -> [B] -> [(A, B)]),

con "usort" (usort :: [Int] -> [Int]),

con "sum" (sum :: [Int] -> Int),

con "++" ((++) :: [A] -> [A] -> [A]),

con "map" (map :: (A -> B) -> [A] -> [B]),

con "foldl"

(foldl :: (B -> A -> B) -> B -> [A] -> B),

con "takeWhile"

(takeWhile :: (A -> Bool) -> [A] -> [A]),

con "foldr"

(foldr :: (A -> B -> B) -> B -> [A] -> B),

con "drop" (drop :: Int -> [A] -> [A]),

con "dropWhile"

(dropWhile :: (A -> Bool) -> [A] -> [A]),

con "span"

(span :: (A -> Bool) -> [A] -> ([A], [A])),

con "unzip" (unzip :: [(A, B)] -> ([A], [B])),

con "+" ((+) :: Int -> Int -> Int),

con "[]" ([] :: [A]),

con "partition"

(partition :: (A -> Bool) -> [A] -> ([A], [A])),

con "fst" (fst :: (A, B) -> A),

con "take" (take :: Int -> [A] -> [A]) ]

Figure 11: The HugeLists benchmark from QUICKSPEC
we use to compare SPECTACULAR and QUICKSPEC when
there are many terms in scope. Note that from this spec,
SPECTACULAR also adds additional generators for the types
involved, and constants such as empty lists of various types.

ploying both application-specific and standard techniques from
this field. Gulwani et al [43] gives a review of this area.

VI. CONCLUSION

SPECTACULAR is an efficient tool for discovering laws
for property-based testing, and has the potential to scale to
settings where law discovery has previously been intractable,
such as settings with generalized types. In doing so, we
hope to continue to grow the usability of property-based
testing. Beyond testing, the recent development of ECTA-
based synthesis techniques hints at great leaps in the general
usability of synthesis outside limited domains, and their simple
implementation promises easy integration into more tools.

Future Work

SPECTACULAR is a recent development, and there are still
many avenues to explore using SPECTACULAR.

Creating generators on-the-fly: One of the challenges for
SPECTACULAR is that it is unaware of recursive generators,
e.g. Arbitrary [a] => Arbitrary [[a]] can be derived from
Arbitrary a => Arbitrary [a], and so on. In the current
implementation, these must be generated and made available
in the ECTA for terms that require a list of arbitrary depth,
e.g. concat (concat xs) == concat (map concat xs), which
requires a generator xs :: [[[a]]]. Currently, this is done by
generating instances specifically for lists during initialization,
and these instances added to the signature. However, integrat-
ing the available type-classes (and specifically the generators
of arbitrary data) into the ECTA itself would be more efficient,
as the current implementation of adding a list type for every
type in the signature makes the search space a lot bigger.

Synthesizing non-equations and implications: Theory-
exploration usually focuses on tautologies such as equations,
but properties often only hold for a subset of the domain such
as positive integers. ECTAs are good for encoding such depen-
dencies between premises and conclusions and should excel
at synthesizing such implications and other non-equations.

Efficient node-based pruning: Branch-pruning reduces the
number of inspected terms by orders of magnitude, but most
of the time is still spent on expanding unification variables
to enumerate out the next term instead of testing of terms.
But there are tree-automata algorithms that can eliminate
all undesired terms before even beginning enumeration [44],
which we hope to extend to ECTAs.

More directed enumeration: The ECTA-based technique
allows a lot finer control over how the program space is enu-
merated, and the simplicity of the ECTA allows our implemen-
tation to do a lot more exploration on which branches to select
in order to generate more valuable laws (i.e. more general ones
first, etc.). Exploring how to control the enumeration from the
outside to direct it towards parts likely to contain laws is an
exciting avenue of research, and offering better enumeration
heuristics could greatly speed up the current exploration.
Of special interest is would be the ability to heuristically
direct the enumeration towards such laws as associativity and
commutativity that often hold for many data-structures.



Rapid exploration of modules: SPECTACULAR is quite
efficient at generating terms in a fully monomorphized setting,
even for large signatures. This could allow users to rapidly
explore the properties of a module without having to manually
specify which functions are interesting in a signature. One
issue however is how to generate the dynamic instances and
generators at runtime, though some combination of template
haskell and using GHC as a library might be feasible.

Rapid on-demand generation of properties: Properties can
be used to prevent overfitting in program repair, as well as help
with fault-localization [45]. Properties are scarce in the wild
which limits the use of property-based repairs. Being able to
rapidly generate properties for a module when it is stable can
be of great use in program repair to fix small bugs that might
creep in during development, and can serve as a checkpoint
for a current state of a module and function as regression tests,
ensuring that repairs are patching the issue and not meddling
with the correctness of the whole system.

Efficiency of overall pipeline: While SPECTACULAR uses an
efficient data-structure for coming up with potential candidates
to test, the overall efficiency of the pipeline could be improved,
for example by improving the testing part by storing values
to quickly reject false properties in a manner similar to
QUICKSPEC [14]. For testing whole modules, determining the
“interesting” parts of the modules will be important.

Applicability beyond Haskell: The speed of SPECTACULAR
is highly dependent on the type-system of Haskell, which
allows us to massively restrict the search space for valid
terms and test only well-typed programs. In languages such
as Python, the amount of “well-typed” terms becomes harder
to model. However, with recent additions such as type hints,
an ECTA based approach to synthesizing Python programs
might be possible. In general, languages that allow random
data-generation and have some constraints on the “shape” of
valid terms will admit techniques similar to SPECTACULAR,
though care must be taken to accurately model and/or sandbox
side-effects, but this has been done for both C and Erlang [46].
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