PropPR: Property-Based Automatic Program Repair

Matthias Pall Gissurarson” Leonhard Applis Annibale Panichella
Chalmers University of Technology TU Delft TU Delft
Gothenburg, Sweden Delft, Netherlands Delft, Netherlands
pallm@chalmers.se L.H.Applis@Tudelft.nl A Panichella@Tudelft.nl

Arie van Deursen
TU Delft
Delft, Netherlands
Arie.vanDeursen@Tudelft.nl

ABSTRACT

Automatic program repair (APR) regularly faces the challenge of
overfitting patches — patches that pass the test suite, but do not
actually address the problems when evaluated manually. Currently,
overfit detection requires manual inspection or an oracle mak-
ing quality control of APR an expensive task. With this work, we
want to introduce properties in addition to unit tests for APR to
address the problem of overfitting. To that end, we design and im-
plement PROPR, a program repair tool for Haskell that leverages
both property-based testing (via QuickCheck) and the rich type sys-
tem and synthesis offered by the Haskell compiler. We compare the
repair-ratio, time-to-first-patch and overfitting-ratio when using
unit tests, property-based tests, and their combination. Our results
show that properties lead to quicker results and have a lower overfit
ratio than unit tests. The created overfit patches provide valuable
insight into the underlying problems of the program to repair (e.g.,
in terms of fault localization or test quality). We consider this step
towards fitter, or at least insightful, patches a critical contribution
to bring APR into developer workflows.

CCS CONCEPTS

- Software and its engineering — Search-based software en-
gineering; Automatic programming; Functional languages; Source
code generation.

KEYWORDS

automatic program repair, search based software engineering, syn-
thesis, property-based testing, typed holes

ACM Reference Format:

Matthias Pall Gissurarson, Leonhard Applis, Annibale Panichella, Arie van
Deursen, and David Sands. 2022. PRoPR: Property-Based Automatic Program
Repair. In 44th International Conference on Software Engineering (ICSE '22),
May 21-29, 2022, Pittsburgh, PA, USA. ACM, New York, NY, USA, 13 pages.
https://doi.org/10.1145/3510003.3510620

“The first two authors contributed equally to this paper

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).

ICSE °22, May 21-29, 2022, Pittsburgh, PA, USA

© 2022 Copyright held by the owner/author(s).

ACM ISBN 978-1-4503-9221-1/22/05.

https://doi.org/10.1145/3510003.3510620

David Sands

Chalmers University of Technology

Gothenburg, Sweden
dave@chalmers.se

1 INTRODUCTION

Have you ever failed to be perfect? Don’t worry, so have automatic
program repair (APR) approaches. APR faces many challenges, some
inherited from search-based software engineering (SBSE), like over-
fitting [52, 67], predictive-evaluation in search [73], and duplicate
handling [9]. Other challenges are unique to the domain itself, such
as deriving ingredients for a fix [41] and producing valid programs
[28]. Consequently, APR has open research in all of its core as-
pects: search-space, search-process, and fitness-evaluation. The
research community is shifting its focus towards other solutions,
either leaving behind boundaries of search space using generative
neural networks [36, 42, 65], or by empirical evidence that fixes are
often related to dependencies, not the code itself [4, 14]. Fixes are
usually validated by running against the test suite of the program,
assuming that a solution that passes all tests is a valid patch. How-
ever, Le Goues et al. [54] showed that Program Repair can overfit,
i.e., that a fix passes the test suite despite removing functionality
or just bypassing single tests.

Usually, generated patches are evaluated against a unit test suite
of the buggy program [34]. The fitness is defined as the number of
failing tests in the suite [40], making a fitness of zero a potential
fix. The problem is the quality of the tests — often not all impor-
tant cases are covered, and the search finds something that passes
all tests but doesn’t provide all wanted functionality [52]. This is
considered an overfit repair attempt. A particularly good example
for this is the Kali approach [54], that removes random statements
of a program. In a later study, Martinez et al. [38] showed that out
of 20 of the repair attempts that passed the tests, only one was a
real fix. One approach by Yz et al. [71] to address overfitting was
to introduce tests generated with EvoSuite [15] to have a stronger
test suite, reporting only an improvement in speed, not in found
solutions. Unfortunately, EvoSuite introduces a new problem: If the
program was faulty (which programs that we are trying to repair
are), an automatically generated test suite may assert the faulty
behavior and make test-based repairs unable to ever produce a
correct program, despite passing the (generated) test suite. Thus,
current automated test-case generation is not the be-all and end-all
for overfitting in APR.

This work aims to improve APR with addressing the overfitting
problem by introducing properties [8] in addition to unit tests. A
software property is an attribute of a function (e.g., symmetry, idem-
potency, etc.) that is evaluated against randomly created instances
of input data. Well-written properties often cover hundreds of (unit)
tests, making them attractive candidates for fitness evaluation.

https://doi.org/10.1145/3510003.3510620
https://doi.org/10.1145/3510003.3510620

ICSE °22, May 21-29, 2022, Pittsburgh, PA, USA

We argue that properties can be an improvement to the overfit-
ting challenge in APR. While property-based testing frameworks
exist for a range of languages, the practice is particularly natu-
ral for functional programming, and widely used in the Haskell
community. Therefore, we implement a tool called ProPR, which
utilizes properties for Haskell-Program-Repair and evaluate the
repair rates and overfitting rates for different algorithms (random
search, exhaustive search, and genetic algorithms). Our fixes follow
a GenProg-like approach [34] of representing patches as a set of
changes to the program, with the major difference that our patch
ingredients (mutations) are sourced by the Haskell compiler using
a mechanism called typed holes [19]. A typed hole can be seen as
a placeholder, for which the compiler suggests elements that pro-
duce a compiling program. As these suggestions cover all elements
in scope (not only those used in the existing code), we overcome
to some degree the redundancy assumption [41], i.e., the concept
that patches are sourced from existing code or patterns, which is
common to GenProg-like approaches.

Our results show that properties help to reduce the overfit ratio
from 85% to 63% and lead to faster search results. Properties can still
lead to overfitting, and the union test suite of properties and unit
tests inherits both strengths and weaknesses. We therefore argue
to use properties if possible, and suggest to aim for the strongest
test suite regardless of the test-type. The patches from PROPR can
produce complex repair patterns that did not appear within the
code. Even patches that are overfit can give valuable insight in the
test suite or the original fault.

Our contributions can be summarized as follows:

(1) Introducing the use of properties for fitness functions in
automatic program repair.

(2) Showing how to generate patch candidates using compiler
scope, partially addressing the redundancy assumption.

(3) Performing an empirical study to evaluate the improvement
gained by properties with a special focus on manual inspec-
tion of generated patches to detect eventual overfitting.

(4) An open source implementation of our tool PROPR, enabling
future research on program repair in a strongly typed func-
tional programming context.

(5) Providing the empirical study data for future research.

The remainder of the paper is organized as follows: Section 2
introduces property-based testing and summarizes the related work
in the fields of genetic program repair as well as background on
typed holes, which are a key element of our patch generation method.
In Section 3 we present the primary aspects of the repair tool and
their reasoning. Section 4 presents the data used in the empirical
study, and declares research questions and methodology. The results
of the research questions are covered in Section 5 and discussed in
Section 6. After the threats to validity in Section 7 we summarize the
work in Section 8. The shared artifacts are described in Section 9.

2 BACKGROUND AND RELATED WORK
2.1 Property-Based Testing

Property-based testing is a form of automated testing derived from
random testing [22]. While random testing executes functions and
APIs on random input to detect error states and reach high code
coverage, property-based testing uses a developer defined attributes

Matthias Pall Gissurarson, Leonhard Applis, et al.

prop_1 :: Double -> Test unit_1 :: Test
prop_1 x = unit_1 =
sin x ~== sin (x + 2*m) sin m ~== sin (3*m)
prop_2 :: Double -> Test unit_2 :: Test
prop_2 x = unit_2 = sin 0 == 0
sin (-1*x) ~== -T*(sin x)

unit_3 :: Test
prop_3 :: Test unit_3 = sin (x/2) ==

prop_3 = sin (x/2) ==

unit_4 :: Test

prop_4 :: Test unit_4 =

prop_4 = sin 0 == 0 sin (-1*m/2) == -1x(sin 7/2)
(~==) :: Double -> Double -> Bool
n~==m=abs (n -m) <= 1.0e-6

Figure 1: Comparison of Properties and Unit Tests for sin

called properties of functions that must hold for any input of that
function [8]. Random tests are performed for the given property;
If an input is found for which the property returns false or fails
with an error, the property is reported as failing along with the
input as a counter example [8]. Some frameworks will additionally
shrink the counter example using a previously supplied shrinking
function to offer better insight into the root cause of the failure [8].

There are some variations on property-based testing, e.g. Small-
Check, which performs an exhaustive test of the property [58].
QuickCheck approximates this behavior with a configurable num-
ber of random inputs (by default 100 random samples). Figure 1
provides an example comparison of properties and unit tests of a
sine function. The properties require an argument Double -> Test
and must hold for any given Double. On any single QuickCheck
run, 202 tests are performed, forming a much stronger test suite for
a comparable amount of code.

A remaining question is whether one cannot just reproduce these
202 tests by unit tests. For a single seed, this is doable — but it is
a special strength of properties that the new tests are randomly
generated on demand. We hope this addresses the problem of over-
fitting [52], as there are no fixed tests to fit on as long as the seed
changes. Furthermore, we stress that maintaining 2 properties is
easier than maintaining 200 (repetitive) unit tests.

2.2 Haskell, GHC & Typed Holes

Haskell. Haskell is a statically typed, non-strict, purely functional
programming language. Its design ensures that the presence of side
effects is always visible in the type of a function, and it is typical
programming practice to cleanly separate code requiring side effects
from the main application logic. This facilitates a modular approach
to testing in which program parts can be tested in isolation without
needing to consider global state or side effects. Haskell’s rich type
system and type classes allow tools such as QuickCheck [8] to
efficiently test functions using properties, where the inputs are
generated by QuickCheck based on a generator for a given datatype.

Valid Hole-Fits. Our tool is based on using the Glasgow Haskell
Compiler (GHC), which is widely used in both industry and academia.
GHC has many features beyond the Haskell standard, including a

PrOPR: Property-Based Automatic Program Repair

feature known as typed holes [19]. A “hole”, denoted by an under-
score character (_), allows a programmer to write an incomplete
program, where the hole is a placeholder for currently missing
code.

Using a hole in an expression generates a type error containing
contextual information about the placeholder, including, most im-
portantly, its inferred type. In addition to contextual information,
GHC suggests some valid hole-fits [19]. Valid hole fits are a list of
identifiers in scope which could be used to fill the holes without
any type errors. As a simple example, consider the interaction with
the GHC REPL shown in Figure 2.

GHCi> let degreesToRadians :: Double -> Double
degreesToRadians d = d » _ / 180
<interactive>:4:30: error:
+ Found hole: _ :: Double
In the expression: d * _ / 180
Valid hole fits include
d :: Double (bound at <interactive>:4:22)
pi :: forall a. Floating a => a (imported from ‘Prelude’)

Figure 2: Example code with a hole and its valid hole-fits

Here the definition of degreesToRadians contains a hole. There
are just two valid hole-fits in scope: the parameter d and the prede-
fined constant pi. GHC can not only generate simple candidates
such as variables and functions, but also refinement hole-fits. A
refinement hole-fit is a function identifier with placeholders for
its parameters. In this way GHC can be used to synthesize more
complex type-correct candidate expressions through a series of
refinement steps up to a given user-specified refinement depth. For
example, setting the refinement depth to 1 will additionally provide,
among others, the following hole-fits:

negate (_ :: Double)
fromInteger (_ :: Integer)

In this work we use hole fitting for program repair by removing
a potentially faulty sub-expression, leaving a hole in its place, and
using valid hole-fits to suggest possible patches.

Hole-Fit Plugins. By default, GHC considers every identifier in
scope as a potential hole-fit candidate, and returns those that have
a type corresponding to the hole as hole-fits. However, users might
want to add or remove candidates or run additional search using
a different method or external tools. For this purpose, GHC added
hole-fit plugins [17], which allows users to customize the behavior
of the hole-fit search. When using GHC as a library, this also allows
users to extract an internal representation of the hole-fits directly
from a plugin, without having to parse the error message.

2.3 GenProg, Genetic Program Repair & Patch
Representation

Search-based program repair centered mostly around the work of
Le Goues et al. [34] in GenProg, which provided genetic search
for C-program repair. One of the primary contributions was the
representation of a patch as a change (addition, removal, or replace-
ment) of existing statements. Genetic search is based around the
mutation, creation and combination of chromosomes — the basic
building bricks of genetic search. A chromosome of APR is a list

ICSE °22, May 21-29, 2022, Pittsburgh, PA, USA

of such changes rather than a full program (AST), making the ap-
proach lightweight. Utilizing changes is based on the Redundancy
Assumption [32], i.e., assuming that the required statements for
the fix already exists. The code might just use the wrong variable
or miss a null-check to function properly. This assumption has
been verified by Martinez et al. [41], showing that the redundancy
assumption widely holds for inspected repositories. We adopted
the patch-representation in our tool, but were able to weaken the
redundancy assumption (see Section 3).

Since GenProg, much has been done in genetic program repair
[11] mostly for Java. Particularly Astor [39] enabled lots of research
[61, 66, 69, 70] due to its modular approach, as well as real-world
applications [59, 62]. This modularity, mostly the separation of
fault localization, patch-generation and search is a valuable lesson
learned by the community that we adopted in our tool. Compared
to this body of research, our scientific contributions lie within the
patch-generation and the search-space (see Section 3.1).

2.4 Repair of Formally Verified Programs &
Program Synthesis

Another field of research dominant in functional programming
is formal verification, in which mathematical methods are used
to prove the correctness of programs. Due to its strengths it has
been widely applied to various tasks, such as hardware-verification
[26], cryptographic protocols [43] or lately smart contracts [6].
But formal verification has also been applied to the domain of
program repair and synthesis [30, 60], and some languages can
arguably be considered synthesizers around constraints (e.g. Pro-
log). Using specification-based synthesis in combination with a
SAT solver can be effective, however the accuracy is closely tied
to the completeness of the post-condition constraints [20]. For
Haskell, these approaches revolve around liquid types, which en-
rich Haskell’s type system with logical predicates that are passed
on to an SMT solver during type checking [48, 56, 57, 64]. The ex-
isting approaches [21, 25, 50] focus primarily on the search-aspects
of program synthesis due to the (infinite) search space and often
perform a guided search similar to proof-systems. The approach
used in the Lifty [51] language is especially relevant: Lifty is a
domain-specific data-centric language in which applications can
be statically and automatically verified to handle data specified
as per declarative security policies, and suggest provably correct
repairs when a leak of sensitive data is detected. Their approach
differs in that they target a domain-specific language and focus on
type-driven repair of security policies and not general properties.
Another interesting approach is the TYGAR based Hoogle+ API
discovery tool, where users can specify programming tasks using
either a type, a set of input-output tests, or both, and get a list of
programs composed from functions in popular Haskell libraries
and examples of behavior [24]. It is however focused on API discov-
ery and not program repair, although incorporating Hoogle+ into
PropR is an interesting avenue for future work. The approach by
Lee et al. [35] is in many ways similar; They also operate on student
data and find very valuable insights from repair and identical chal-
lenges. The approach they developed (FixML) exploits typed holes
to align buggy student programs with a given instructor-program
based on symbolic execution. FixML is different as it requires a

ICSE °22, May 21-29, 2022, Pittsburgh, PA, USA

gold standard, and synthesizes by type-enumeration after symbolic
execution. To some degree, this is similar to our implementation
of an exhaustive search. Semantics-based repair using symbolic-
execution like that of Angelix [44] can be very effective in fixing
real-world bugs, and uses symbolic expressions similarly to our
typed-holes. However, there are some scalability concerns for sym-
bolic execution, and while they can be mitigated using a carefully
chosen number of suspicious expression and their derived angelic
forests [44], they can also be mitigated using genetic algorithms
and the more lightweight property-based analysis, motivating their
usage in PrRoPR. Compared to program synthesis, program repair
is better able to take advantage of a "reasonable" baseline program
from the developers.

In terms of utilizing specifications, the primary benefit of Quick-
Check is the easy adoption for users, whereas formal verification
comes with a high barrier of entry for most programs and requires
dedicated and educated developers. To some degree we utilize for-
mal verification due to the type-correctness-constraint that already
greatly shrinks the search space — while we assert the functional
correctness with tests and properties. A full formal verification-
suite might produce better results, but we ease the adoption of our
approach by utilizing comprehensive properties and tests.

3 TECHNICAL DETAILS — PROPR

Source
| ©
Properties — | QuickCheck | — O
Test Properties

I N

Rebind In Properties Failing Properties

1

Inspect Bindings ’Haskell Program Coverage‘

| ®
\ Targets Fault localization

T 1
Fault-involved Expressions
Apply Fixes @ ‘ P

@ ‘ Perforation
Diff «—— Fixes !)
T Perforated Expressions
1

Candidate Selection

GHC + Plugin

Candidate Evaluation) “)
‘ Hole-Fit Synthesis

i

Search Algorithm | «—— Candidate Fixes

Figure 3: The ProPR test-localize-synthesize-rebind loop

To investigate the effectiveness of combining property-based
tests with type-based synthesis, we implemented PrRoPR. PROPR
is an automated program repair tool written in Haskell, and uses

Matthias Pall Gissurarson, Leonhard Applis, et al.

GHC as a library in conjunction with custom-written hole-fit plug-
ins as the basis for parsing source code, synthesizing fixes, as for
instrumenting and running tests. PROPR also parametrizes the tests
so that local definitions can be exchanged with new ones, which
allows us to observe the effectiveness of a fix. To automate the
repair process, PROPR implements the search methods described in
Section 3.4 to find and combine fixes for the whole program repair.
An overview of the PROPR test-localize-synthesize-rebind (TLSR)
loop is provided in Figure 3. The circled numbers () in this section
refer to the labels in Figure 3.

len :: [a] -> Int
len [1 =0

len xs = product $ map (const (1 :: Int)) xs
prop_abc :: Bool

prop_abc = len "abc" == 3

prop_dup :: [a] -> Bool

prop_dup x = len (x ++ x) == 2 * len X

Figure 4: An incorrect implementation of length. We map over
the list and set all elements to 1 :: Int, and take the product
of the resulting list. This means that len will always return 1
for all lists. An expected fix would be to take the sum of the
elements, which would give the length of the list.

As a running example, imagine we had an incorrect implementa-
tion of a function to compute the length of a list called len, with
properties, as seen in Figure 4.

3.1 Compiler-Driven Mutation

To repair a program, we use GHC to parse and type-check the
source into GHC’s internal representation of the type-annotated
Haskell AST. By using GHC as a library, we can interact with
GHC’s rich internal representation of programs without resorting
to external dependencies or modeling. We determine the tests to
fix by traversing the AST for top-level bindings with either a type
(TestTree) or name (prop) that indicates it is a test (1). We use GHC’s
ability to derive data definitions for algebraic data types [17] and the
Lens library [27] to generate efficient traversals of the Haskell AST.
To determine the function bindings to mutate, we traverse the ASTs
of the properties and find variables that refer to top-level bindings
in the current module (2). We call these bindings the targets.

In our example, both prop_abc and prop_dup use the local top-
level binding len in their body, so our target set will be {len}.

Parametrized properties. To generalize over the definition of tar-
gets in the properties and tests, we create a parametrized property
from each of the properties by changing their binding to take an ad-
ditional argument for each of the targets in their body. This allows

prop'_abc :: ([al] -> Int) -> Bool
prop'_abc f = f "abc" == 3

prop'_dup :: ([a]l -> Int) -> [a] -> Bool
prop' _dup f x = f (x ++ x) == 2 x f x

Figure 5: The parametrized properties for len

PrOPR: Property-Based Automatic Program Repair

abc_prop :: Bool
abc_prop = prop'_abc length

dup_prop :: [a] -> Bool
dup_prop = prop'_dup length

Figure 6: The parametrized properties applied to a different
implementation of len, the standard library length

us to rebind (i.e., change the definition of) each of the targets by pro-
viding them as an argument to the parametrized property (3). Once
the parametrized property has received all the target arguments,
it now behaves like the original property, with the target bindings
referring to our mutated definitions. We show the parametrized
properties for the properties in Figure 4 in Figure 5.

The new properties in Figure 6, abc_prop and double_prop will
now behave the same as the original prop_abc and prop_dup, but
with every instance of len replaced with length:
abc_prop = length "abc" == 3
double_prop x = length (x ++ x) == 2 x length x
This allows to create new definitions of len and evaluate how the
properties behave with the different definitions.

Fault localization. PROPR uses an expression-level fault localiza-
tion spectrum [1], to which we apply a binary fault localization
method (touched or not touched by failing properties). A notable
difference to other APR tools like Astor is that we can perform
fault localization for the mutated targets. This enables PrRoPR to
adjust the search space once a partial repair has been found, i.e.
one that passes a new subset of the properties. Since fault local-
ization is expensive, by default we only perform it on the initial
program similarly to Astor [39, 40]. GHC’s Haskell Program Cov-
erage (HPC) can instrument Haskell modules and get a count of
how many times each expression is evaluated during execution
[18]. Using QuickCheck, we find which properties are failing and
generate a counterexample for each failing property (4). For prop-
erties without arguments (essentially unit tests), we do not need
any additional arguments, so we can run the property as-is: the
counterexample is the property itself. By applying each property
to its counterexample and instrumenting the resulting program
with HPC, we can see exactly which expressions in the module are
evaluated in a failing execution of property (5). The expressions
evaluated in the counterexample of the property are precisely the
expressions for which a replacement would have an effect: non-
evaluated expressions cannot contribute to the failing of a property.
We call these the fault-involved expressions. These will be all the
expressions involved in failing tests/properties, and covers every
expression invoked when running counter-examples.

In our simple example, only prop_dup requires a counterexam-
ple, for which QuickCheck produces a simple, non-empty list, [()].
When we then evaluate prop_abc and prop_dup [()], only the ex-
pressions in the non-empty branch of len are evaluated: the empty
branch is not involved in the fault.

Perforation. For the targets, we generate a version of the AST
with a new typed hole in it, in a process we call perforation. When
we perforate a target, we generate a copy of its AST for each fault-
involved expression in the target, where the expression has been

ICSE °22, May 21-29, 2022, Pittsburgh, PA, USA

replaced with a typed hole (6). The perforated ASTs are then com-
piled with GHC. Since they now have a typed hole, the compilation
will invoke GHC’s valid hole-fit synthesis [19] (7). We present a
few examples of the perforated versions of len in Figure 7.

len [1 =0
len xs = _
len [1 =0
len xs = _ $ map (const (1 :: Int)) xs

len [1] =0
len xs = product $ _

len [1 =0

len xs = product $ _ (const (1 :: Int)) xs

Figure 7: A few perforated versions of len. N.B. the empty
branch is not perforated, as it is not involved in the fault

3.2 Fixes

A fix is represented as a map (lookup table) from source locations in
the module to an expression representing a fix candidate. Merging
two fixes is done by simply merging the two maps. Candidate fixes
in PrROPR come in three variations, hole-fit candidates, expression
candidates, and application candidates.

Hole-fit Candidates. Using a custom hole-fit plugin, we extract
the list of valid hole-fits for that hole, and now have a well-typed
replacement for each expression in the target AST.

Found hole: _ [Int] -> Int
In an equation for 'len':

len xs = _ $ map (const (1 :: Int)) xs
Valid hole fits include

head :: [a] -> a

last :: [a] -> a

length :: Foldable t => t a -> Int

maximum :: (Foldable t, Ord a) => t a -> a

minimum :: (Foldable t, Ord a) => t a -> a

product :: (Foldable t, Num a) => t a -> a

sum :: (Foldable t, Num a) => t a -> a
Valid refinement hole fits include

foldll (_ :: Int -> Int -> Int)

Figure 8: Hole-fits for a perforation of len, where product has
been replaced with a hole

We derive hole-fit candidates directly from GHC’s valid hole-fits,
as seen in Figure 8, giving rise to the fixes in Figure 9. These take
the form of an identifier (e.g., sum), or an identifier with additional
holes (e.g., foldl1 _) for refinement fits.

Since we synthesize only well-typed programs, we cannot use
refinement hole-fits directly: the resulting program would produce
a typed hole error. To use refinement hole-fits, we recursively syn-
thesize fits for the holes in the refinement hole-fits up to a depth

ICSE °22, May 21-29, 2022, Pittsburgh, PA, USA

{<interactive:3:10-15>: head}
{<interactive:3:10-15>: last}
{<interactive:3:10-15>: length}

{<interactive:3:10-15>: sum}

Figure 9: Candidate fixes derived from the valid hole-fits in
Figure 8. The location refers to product in len

configurable by the user. This means that we can generate e.g.,
foldll (+) when the depth is set to 1, and e.g., foldl1 (flip _)
— foldl1 (flip (-)) for a depth of 2, etc. By tuning the refine-
ment level and depth, we could synthesize most Haskell programs
(excepting constants). However, in practical terms, the amount of
work grows exponentially with increasing depth.

To be able to find fixes that include constants (e.g., String or Int)
or fixes that would otherwise require a high and deep refinement
level, we search the program under repair for expression candidates
[37]. These are injected into our custom hole-fit plugin and checked
whether they fit a given hole using machinery similar to GHC’s
valid hole-fit synthesis, but matching the type of an expression in-
stead of an identifier in scope. In our example, these would include
0, (1 :: Int), (x ++ x), and more. For each expression candidate, we
then check that all the variables referred to in the expressions are in
scope, and that the expression has an appropriate type. We also look
at application candidates of the form (_ x), where x is some expres-
sion already in the program, and _ is filled in by GHC’s valid hole-fit
synthesis. This allows us to find common data transformation fixes,
such as filter (not . null).

Regardless of technical limitations, this approach can be consid-
ered a form of localized program synthesis exploited for program
repair. By using valid hole-fits, we can utilize the full power GHC’s
type-checker when finding candidates and avoid having to model
GHC'’s ever-growing list of language extensions. This allows us to
drastically reduce the search space to well-typed programs only.

3.3 Checking Fixes

Once we have found a candidate fix, we need to check whether they
work. We apply a fix to the program by traversing the AST, and sub-
stituting the expression found in the map with its replacement. We

len1 [1 =0

len1 xs = head $ map (const (1 Int)) xs
len3 [1 =0

len3 xs = length $ map (const (1 :: Int)) xs
len7 [1 =0

len7 xs = sum $ map (const (1 Int)) xs

Figure 10: New targets defined by applying the fixes in Fig-
ure 9 to the original len

do this for all targets, and obtain new targets where the locations of
the holes have been replaced with fix candidates. For the given len
example, the fixes in Figure 9 give rise to the definitions shown in
Figure 10. We then construct a checking program that applies the
parametrized properties and tests to these new target definitions

Matthias Pall Gissurarson, Leonhard Applis, et al.

and compile the result. A simplified example of this can be seen

PropR> mapM sequence

[[quickCheck (prop'_abc len1), quickCheck (prop'_dup lenl)]
,[quickCheck (prop'_abc len2), quickCheck (prop'_dup len2)]
,[quickCheck (prop'_abc len3), quickCheck (prop'_dup len3)]

,[quickCheck (prop'_abc len7), quickCheck (prop'_dup len7)1]
-- Evaluates to:

[[False, False],[False, Falsel,[True, Truel,[False, False]
,[False, False],[False, Falsel,[True, Truel]

Figure 11: Checking our new targets from Figure 10

in Figure 11, though we do additional work to extract the results
in PrRoPR. It might be the case that the resulting program does not
compile: as our synthesis is based on the types, we might generate
programs that do not parse because of a difference in precedence
(precedence is checked during renaming, after type-checking in
GHC). We remove all those candidate fixes that do not compile, ob-
taining an executable that takes as an argument the property to run,
and returns whether that property failed. We run this executable in
a separate process: running it in the same process might cause our
own program to hang due to a loop in the check. By running in a
separate process, we can kill it after a timeout and decide that the
given fix resulted in an infinite loop. After executing the program,
we have three possible results: all properties succeeded; the pro-
gram did not finish due to an error or timeout; or some properties
failed (8). In our example, we see in Figure 11 that 1en3 and len7
pass all the properties, meaning that replacing product with length
or sum qualifies as a repair for the program.

3.4 Search

Within PRoOPR, we implemented three different search algorithms:
random search, exhaustive search, and genetic search @

All three algorithms share a common configuration: they all have
a time budget (measured in wall clock time) after which they exit,
and return the results (if any) that they’ve found.

For the genetic search, PRoPR implements best practices and
algorithms common to other tools such as Astor [39] or EvoSuite
[15]. A mutation consists of either dropping a replacement of a fix,
or adding a new replacement to it. The initial population is created
as picking n random mutations. The crossover randomly picks cut
points within the parent chromosomes, and produces offspring by
swapping the parents’ genes around the cut points. We support
environment-selection [23] with an elitism-rate [3] for truncation.
Elitism means that we pick the top x% percent of the fittest candi-
dates for the next generation, filling the remaining (100 — x)% with
(other) random individuals from the population. We choose random
pairs from the last population as parents and perform environment
selection on the parents and their offspring. Our manual sampling
of repairs-in-progress on the data points showed that genetic search
requires high churn in order to be effective: changing a single ex-
pression of the program usually failed more properties than it fixed.
Hence, the resulting configurations for the experiment have a low
elitism- and high mutation- and crossover-rate.

Within random search, we pick (up to a configurable size)
evaluated holes at random and pick valid hole-fits at random with

PrOPR: Property-Based Automatic Program Repair

which to fill them. We then check the resulting fix and cache it.
The primary reason for using random search is to show that the
genetic search is an improvement over guessing. Nevertheless, Qi et
al. [53] showed that random search sometimes can be superior to
genetic search, further motivating its application. Besides, random
search is a standard baseline in search-based software engineering
to assess whether more “intelligent” search algorithms are needed
for the problem under analysis.

For exhaustive search, we check each hole-fit in a breadth-first
manner: first all single replacement fixes, then all two replacement
fixes and so on until the search budget is exhausted. Exhaustive
search is deterministic apart from inherent randomness in Quick-
Check. We use exhaustive search to demonstrate the complexity of
the problem, and to show that search is better than enumeration.
The deterministic search pattern of exhaustive search would be
ideal for a single fix problem such as our example.

The fitness for all searches is calculated as the failure ratio
%, with a non-termination or errors treated as the
worst fitness 1 and a fitness of 0 (all tests passing) marks a candidate
patch. Such patches are removed from populations in genetic search
and replaced by a new random element.

Within the test-localize-synthesize-rebind loop (Figure 3) we
perform one generation of genetic search per loop, and after the
selection of chromosomes the program is re-bound and coverage re-
evaluated. The authors observed that this is a bit over-engineered
for small programs — the fault localization did not greatly change
when the programs had only a single failing property. As an opti-
mization, we added a flag to skip the steps (5) to (7) in the loop to
speed up the actual search. This configuration was enabled during
experiments presented in Section 4. The exhaustive and random
search do not perform any rebinding.

3.5 Looping and Finalizing Results

Looping. If there are still failing properties after an iteration of
the loop, we apply the current fixes we have found so far to the
targets and enter the next iteration of the loop , repeating the
process with the new targets until all properties have been fixed,
or the search budget runs out.

Finalizing and Reporting Results. After we have found a set of
valid fixes that pass all the properties, we generate a diff for the
original program based on the program bindings and the mutated
targets constituting the fix @ This way the resulting patches can
be fed into other systems such as editors or pull requests.

4 EMPIRICAL STUDY

4.1 Research Questions

Given the concepts presented in Section 3, research interests are
twofold: How well does the typed hole synthesis perform for APR,
and what is the individual contribution of properties. As within the
integral approach of PropR, the effects cannot truly be dissected;
The only contributions that we can separate for distinct inspection
is the use of properties, under which we will investigate the patches
generated by PropR.

ICSE °22, May 21-29, 2022, Pittsburgh, PA, USA

diff --git a/<interactive> b/<interactive>
--- a/<interactive>

+++ b/<interactive>

@@ -1,2 +1,2 @@ len []1 =0

len [1 =0
-len xs = product $ map (const (1 Int)) xs
+len xs = length $ map (const (1 Int)) xs

diff --git a/<interactive> b/<interactive>
--- a/<interactive>

+++ b/<interactive>

@@ -4,2 +4,2 @@ len [] =0

len [1 =0
-len xs = product $ map (const (1 Int)) xs
+len xs = sum $ map (const (1 Int)) xs

Figure 12: The final result of our repair for len

We first want to answer whether properties add value for guiding
the search. Ideally, properties should improve the repair-rate, speed
and quality regardless of the approach, which we address in RQ1:

Research Question 1

To what extent does automatic program repair benefit from
the use of properties?

Given that properties do have an impact (for better or worse),
we want to quantify its extent on configuration and selection of
search algorithms. For example, we expect that the use of properties
helps with fitness and search, but will increase the time required for
evaluation — this would motivate to configure the genetic search to
have small but well guided populations. To elaborate this we define
RQ2 as follows:

— Research Question 2

How can we improve (and configure) search algorithms when
used with properties?

With the last research question we want to perform a qualitative
analysis on the results found. Previous research showed that just
maximizing metrics is not sufficient. With a manual analysis we
look for the issue of overfitting and try to investigate new issues
and new patterns of overfitting.

Research Question 3

To what extent is overfitting in automatic program repair
addressed by the use of properties?

4.2 Dataset

The novel dataset stems from a student course on functional pro-
gramming. Within the exercise, the students had to implement a
calculator that parses a term from text, calculates results and deriva-
tions. While the overall notion is that of a classroom exercise, the
problem nevertheless contains real-world tasks asserted by real-
world tests. The calculator itself is a classic student-exercise, but

ICSE °22, May 21-29, 2022, Pittsburgh, PA, USA

Table 1: Parameters for Grid Experiment

’ parameter ‘ inspected values
tests Unit Tests ; Properties ; Unit Tests + Properties
search random ; exhaustive ; genetic
termination 10 minute search-budget
seeds 5 seeds

the subtask of parsing is both common and difficult, representing
a valuable case for APR. In total, we collected 30 programs that
all fail at least one of 23 properties and one of 20 unit tests. The
programs range from 150 to 700 lines of code (excluding tests) and
have at least 5 top level definitions. These are common file-sizes for
Haskell, e.g. PROPR itself has an average of 200 LoC per file. The
faults are localized to one of the three modules provided to PROPR.

The most violated tests are either related to parsing and printing
(especially of trigonometric functions, also seen in Figure 18) or
about simplification (seen in Figure 13), which are core-parts of
the assignment. The calculator makes a particularly good example
for properties, as attributes such as commutativity, associativity
etc. are easy to assert but harder to implement. Hence, we argue
that the calculator-exercise makes a case for typical programs that
implement properties (i.e., they are not artificially added for APR).

Data points were selected from the students submissions if they
fulfilled the following attributes: @ it compiled (B) it failed the
unit test suite and the property-based test suite separately. An error-
producing test is considered as a normal failure. We selected them
by these criteria to draw per-data-point comparisons of properties
to unit tests and their unison. We consider a separate investigation
of repairing unit test failing programs versus properties failing
programs and their overfitting future research.

prop_simplify_idempotency ::
prop_simplify_idempotency e =
simplify (simplify e) == simplify e

Expr -> Bool

Figure 13: A property asserting the idempotency of simplify
The anonymized data is provided in the reproduction package.

4.3 Methodology / Experiment Design

To evaluate RQ1 and RQ2 we perform a grid experiment on the
dataset with the parameters presented in Table 1. For every of the
45 configurations we make a repair attempt on every point in the
dataset. The genetic search uses a single set of parameters that
was determined through probing. We utilize docker and limit every
container to 8 vCPUs @ 3.6ghz and 16gb RAM (the container’s
lifetime is exactly one data-point). Further information on the data
collection can be found in the reproduction package.

Given this grid experiment, we collect the following values for
each data point in the dataset:

(1) Time to first result

(2) Number of distinct results within 10 minutes

(3) The fixes themselves

The search budget starts after a brief initialization, as PROPR
loads and instruments the program. We round the measured times

Matthias Pall Gissurarson, Leonhard Applis, et al.

to two digits as recommended by Neumann et al. and remove Type-
1-Clones (identical up to whitespace) from the results [29, 45].

To answer RQ1 we check every trial whether at least one patch
was found (whether it was solved). We then perform a Fisher exact
test [55] to see if the entries originate from the same population,
i.e., if they follow the same distribution. We consider results with a
p-value of smaller than 0.05 as significant.

To answer RQ2 we perform a pairwise Wilcoxon-RankSum test
[49] on the data points grouped by their test configuration. The
Wilcoxon test is a non-parametric test and does not make any
assumption on data distribution. In its pairwise application, we first
compare the effect of unit tests against the effect of properties, then
unit tests against combined unit tests and properties etc. We choose
a significance level of 95%.

After we have seen whether properties have a significant impact
on program repair, we can quantify the effect size by applying the
Vargha-Delaney test [63] to the given pairs of configurations. In
the Vargha-Delaney test, a value of e.g. 0.7 means that algorithm
B is better than algorithm A in 70% of the cases, estimating a sim-
ilar probability of dominance for future applications on similarly
distributed data points. Note that a result of 0.5 does not mean
there was no effect — the groups can still be significantly different
without being clearly better.

RQ3 can (to the best of our knowledge) only be answered by
human evaluation. Existing research on automatic patch-validation
by Qi [68] requires an automatic test-generation framework (which
is not available for Haskell) as well as a gold-standard fix to work as
an oracle. They used existing git-fixes as oracles, but we expect some
data points to be correct despite not matching the sample-solution.
Similarly, work by Nilizadeh et al. [46] utilizes formal verification
to automatically verify generated patches, but unfortunately, no
specifications were available for the dataset. Instead, we perform
the analysis manually, similar to [54] and [38]. As there are too
many results to manually inspect, we sampled 70 fixes! and let
two authors label them as overfit or not overfit. The authors do
so based on their domain-knowledge and in accordance with a
given gold-standard. On disagreement, the authors provide a short
written statement before discussing and agreeing on the fix-status.
The conclusion of the discussion is also documented with a short
statement. The manual labels as well as the statements are shared
within the replication package.

5 RESULTS

The following section answers the research questions in order and
presents general information gained in the study.

RQ 1 — Repair Rate. In total, PROPR managed to find patches for
13 of 30 programs of the dataset. In Table 2 we show the detailed
results of these 13 programs. We found 228 patches in total, with
a median of 3 patches per successful run. A visualization of the
results can be seen in Figure 14 and Figure 15.

For every entry, we performed a Fisher exact test based on the
repair per seed of every test suite. The contingency tables are based
on whether the specific seed found patches for the test suite. It

! The threshold of 70 has been calculated after seeing 230 patches being generated,
which is sufficient sample for a p-value of 0.05 at an error rate of 10%

PrOPR: Property-Based Automatic Program Repair

ICSE °22, May 21-29, 2022, Pittsburgh, PA, USA

Table 2: Number of independent runs that produced at least one patch for genetic search

Programs EO01 E02 E03 E04 EO05 E07 E08 E09 E12 E13 E14 E18 E25
Units 0 1 5 5 5 5 5 5 5 0 0 0 5
Props 5 1 1 0 5 5 5 5 2 1 5 2 3
Both 0 1 4 0 1 5 5 5 3 0 0 0 3

showed that 4 of the 13 repaired entries were significantly better in
producing repairs with properties (E1, E3, E4, and E14 from Table 2).

A global Fisher exact test and Wilcoxon-RankSum test showed
no statistical significant difference between the test suites (p-values
of 10%-20%). Whether properties are beneficial is a highly specific
topic, and we expect it more to be a matter whether the bug is
properly covered by the test suite. We argue that properties can
produce stronger test suites than unit tests, but whether they are
applicable and well implemented is ultimately up to the developers.

Solved Entries per Test-Suite

-
N

Search-Algorithm
B exhaustive
W genetic
= random

-
© o

Entries with atleast one Patch
o

both props units

Test-Suite

Figure 14: Solved Entries per Test-Suite and Algorithm

Figure 14 shows genetic search outperforming exhaustive search
in any test suite configuration, and most effectively for properties.

Solved Entries

Props
Both

0

Units

Figure 15: Venn-Diagram of Solved Entries per Suite

Figure 15 shows the overlap of solved entries by test suite. It
shows that four entries were uniquely solvable by using only prop-
erties and one entry was uniquely solvable by the combined test
suite. All entries solved by unit tests have also been solved by the
properties. This does not necessarily imply that properties are better
— the patches can still be overfit and are to be evaluated in RQ3.

Summary RQ1

Properties do not significantly help with producing patches.
In our study, properties found unique patches that unit tests
did not produce. The difference between results in genetic and
exhaustive search were greatest for the properties.

RQ 2 — Repair Speed. We grouped the results per seed and com-
pared the median time-to-first-result for each test suite. All two-
way hypothesis-tests reported a significant p-value of less than 0.01,
proving that there are significant differences in distributions.

In particular, we performed a test? whether properties are faster
than unit tests in finding patches, which was the case with a p-
value of 0.02. The Vargha and Delaney effect size test showed an
estimate of 0.28 which is considered a medium-effect size, showing
that properties are faster than unit tests.

An overview of the time-to-first-result can be seen in Figure 16.
We would like to stress that similar to some results of RQ3, the test
suites’ speed seems to behave in such a way that the slowest and
hardest test determines the magnitude of search. Properties do not
have a significant overhead by design, which is positively surprising.
The cost of their execution is compensated by the speedup in search.

Time to first Result per Test-Suite
1000

Search-Algorithm
B exhaustive
800 q [genetic
B random

600 -

400 q

200 -

time to first patch (in seconds)

o

both props units

Test-Suite

Figure 16: Distribution of Time to First Patch per Entry

Summary RQ2

Genetic Search finds patches faster for properties than for unit
tests. The combined test suite also yields combined search
speed.

RQ 3 — Manual Inspection. From the sample of 70 patches the
authors agreed on 49 to be overfit and 21 to be fit. Given the overall
population of 230 and an error rate of 10%, we expect 62 to 76 of
total patches to be correct. This results in a total non-overfit rate
of 27% to 33%. In particular, patches in the sample found for unit
tests were overfit in 85% of cases (19/23), but the properties were
overfit in 64% of cases (21/33). The combined test suite overfit in
63% (9/14) cases.

These are not evenly distributed — some programs are only re-
paired overfit while others are always well fixed. Hence, we deduct
that of the 13 Entries that have fixes, 3 to 4 have non-overfit repairs.
This estimates an effective repair-rate of 10% or respectively 13%,
which performs similar to the rates reported by Astor [38] (13%)

2Wilcoxon-RankSum with less

ICSE °22, May 21-29, 2022, Pittsburgh, PA, USA

and better than GenProg [38](1-4%). Arja [72] reports an effective
repair rate of 8% which we slightly outperform.

A typical example found by manual inspection was adding space-
stripping to the addition-case of showExpr, as seen in Figure 17.

diff --git a//input/expr_units.hs b//input/expr_units.hs

--- a//input/expr_units.hs

+++ b//input/expr_units.hs

@@ -59,6 +59,6 @@ showExpr (Num n) = show n

showExpr (Num n) = show n

-showExpr (Add a b) = showExpr a ++ " + " ++ showExpr b
+showExpr (Add a b) =

+ showExpr a ++ ((filter (not . isSpace)) (" + ")) ++ showExpr b
showExpr (Mul a b) = showFactor a ++ " % " ++ showFactor b

showExpr (Sin a) = "sin" ++ showFactor a
showExpr (Cos a) = "cos" ++ showFactor a
showExpr (Var c) = [c]

Figure 17: A ProPR patch showing overfitting on a unit test

prop_unit_showBigExpr :: Bool

prop_unit_showBigExpr = strip (showExpr expr) == strip res
where
res = "sin (2.1 * x + 3.2) + 3.5 * x + 5.7"

strip = filter (not . isSpace)
arg = Expr.sin (add (mul (num 2.1) x) (num 3.2))
expr = add (add (add (mul (num 3.5) x)) (num 5.7)) arg

Figure 18: The unit test corresponding to the fix in Figure 17

There is a single unit test (see Figure 18) to assert a printed addition
without spaces. Within the patch only the "+" case gets repaired —
this is due to the precedence of the expression which is correctly
picked up. Hitherto, the change in the addition actually removes all
white-space and correctly passes the test. This (actually) solves the
unit test as expected and is therefore arguably not truly overfitting.
Nevertheless, a developer would perform the string-stripping on all
cases, not only on the addition. Here we see a shortcoming of the
test suite — this would have not been possible if we had a property
prop_showExpr_printNoSpaces or if we simply had unit tests for all
cases. In other data points, where the showExpr had a unified top-
level expression (not an immediate pattern match), the repair was
successful by adding top-level string-stripping. We would also like
to stress the quality of the patch generated despite overfitting: It
draws 4 elements (filter, toLower, isSpace, (.)) which were not in
the code beforehand and applied them at the correct position.
Another issue observed were empty patches — these appeared
when the QuickCheck properties exhibited inconsistent behavior.
We suspect a property that tests for the idempotency of simplify
seen in Figure 13, which requires a randomly generated expression.
The property is meant to assert that e.g., x * 4 * 0 gets reduced to
0 and not to x * 0. Whether this case (or similar ones) are tested
depends on the randomly created expressions — which makes it
an inconsistent test. These are issues with the test suite that were
uncovered due to the hyper-frequent evaluation. The only way to
mitigate this is to provide a handful of unit tests or write a specific
expression-generator used for the flaky property. We labeled empty
patches to be overfit as we do not consider them proper repairs.

Matthias Pall Gissurarson, Leonhard Applis, et al.

Summary RQ3

Adding properties reduced the overfit ratio from 85% to 63%,
doubling the number of good patches. The resulting effective
repair rate of 10% to 13% is comparable to other tools. Overfit-
ting appeared despite the use of properties, but generally less
due to an overall stronger test suite.

6 DISCUSSION

Overfitting on Properties. Similar to the overfitting of empty
patches shown in RQ3, we had cases of patches where one or
more failing properties exhibited inconsistent behavior, and an
overfit patch was considered a successful patch. We observed an
example that changed the simplification of multiplication to re-
turn 0 whenever a variable was in the term. This satisfies the
prop_MultWithe_Alwayse property and should fail other properties
such as multiplicative associativity, but (in rare cases) Quick-Check
produced examples for the other properties that also evaluate to 0.

This overfitting shows that a test suite is not better just because
it is utilizing properties. APR-fitness is still only as good as the test
suite — properties help define better test suites and well-written
properties positively influence APR.

Exploitable Overfitting. A noticeable side effect of the tool is that
if the repair overfits, it produces numerous (bad) patches, as can be
seen from the number of generated proposals.

However, the repairs’ output is not useless despite the overfit-
ting: the suggested patches clearly show the shortcomings of the
test suite. The proposed overfit patches help developers with fault
localization and improving the test suite. In particular, as properties
and unit tests are not exclusive, developers can consider a test-
and-repair-driven approach, where they adjust the test suite and
program iteratively assisted by the repair tool. We consider this
approach attractive for class-room settings, where the programs
are of lower complexity and allow for fast feedback. While we don’t
expect PROPR to be enough to solve the tasks for the students, it
clearly shows where the problems in the tests or code are. Exploring
class-room usage is an interesting direction for future work.

Drastically Increased Search-Space. Due to the novel approach
to finding repair candidates, the search space drastically increased
as compared to using existing expressions or statements only. This
can be seen with the absence of random-search findings. Other
studies showed at least some results with random search, sometimes
reporting random search as most successful [53]. As we find (many)
patches with exhaustive search, the problems are generally solvable
with small changes. This implies that the only reason for random
search to yield no results is the increased search space.

This finding motivates further investigating the genetic search
and its optimization for more complex problems that do not achieve
timely results with exhaustive search. We consider it worthwhile
to revisit existing datasets, that were not solvable due to the redun-
dancy assumption in most repair tools, using a typed hole approach.

Transference to Java. As Java is the most prominent language for
APR, it begs the question of which results can be transferred from
Haskell into more mainstream approaches. Properties are supported

PrOPR: Property-Based Automatic Program Repair

by JUnit-Plugins® and can easily be added to any common test suite
and build-tool. The positive effects of properties as presented in
Section 5 only require Java programs with sufficient properties.
However, the current Java-ecosystems are not utilizing properties;
even less sophisticated JUnit-Features, such as parametrized tests,
are not widely adopted. This is in stark contrast to functional pro-
gramming communities, where tools like QuickCheck are popular.

The hole-fitting repair approach cannot be easily reproduced
for Java; The JavaC, unlike GHC, is not intended to be used as a
library. Nevertheless, Java is strictly typed and the basic hole-fitting-
approach can be integrated using meta-programming libraries like
Spoon [47]. Many challenges remain: As Java’s methods are not
pure functions, they cannot be just transplanted. Side effects can
wreak havoc and just on a technical level polymorphism, that is
often only resolvable dynamically, bares huge follow-up-challenges.

But not all is lost for the JVM: Repair approaches that focus on
the bytecode [12, 16], can easier adapt hole-fitting. In particular,
one could imagine a tool that produces holes for bytecode and
introduces the hole-fits utilizing more strict JVM Compilers such
as Closure or Scala. We consider this extension a hard but valuable
track for further research.

Future Work. The primary research challenge we see is to com-
bine existing approaches with the newly introduced ProPR hole-
fitting. A hybrid approach that could produce high churn with
techniques from Astor [40] or ARJA [72] in combination with the
fine-grained changes produced by ProPR could solve a broader
range of issues. Specific to Haskell is the need to introduce left-
hand side definitions, i.e. new pattern matches or functions. These
could be provided by generative neural networks [2, 7] and either
be used as mutations or as an initial population of chromosomes.
Representing multiple types of changes is only a matter of repre-
sentation within the chromosome — the remaining search, fitness
and fault localization can be kept as is.

For fault localization, we currently use all the expressions in-
volved in the counter-examples. However, it should be possible
to use the coverage information and the passing and failing tests
for spectrum-based fault localization to narrow the fault-involved
expressions further to suspicious expressions, rather than all the
expressions involved in the failing test.

In terms of further evaluation, the next steps are user surveys and
experiments on real world applications such as Pandoc? or Alex?.
In particular, we envision a bot similar to Sorald [14] that provides
patch-suggestions on failing pull-requests. We would like to ask
maintainers and the public community to give feedback on the
quality of repairs, and whether the suggested patches contributed
to fault localization or improvements of the test suite even if not
added to the code.

7 THREATS TO VALIDITY

Internal Threats. We addressed the randomness in our exper-
iments by running 5 runs with different seeds according to the
suggestions of Arcuri and Fraser [5]. The tool used in our experi-
ment could contain bugs. We’ve published it under a FOSS-license

3https://github.com/pholser/junit-quickcheck
“https://pandoc.org/
Shttps://www.haskell.org/alex/

ICSE °22, May 21-29, 2022, Pittsburgh, PA, USA

to gain further insights and suggestions from the community. The
experiment and dataset may contain mistakes, which we address by
providing a reproduction package and open source the experiment
and data. The package also contains notes on the data-preparation
for the experiment.

External Threats. The dataset is based on student data, which
could be considered artificial. We stress that student data has been
used in literature for program repair previously [11, 13, 31, 33]. A
real-world study on program such as Pandoc [10] is part of future
work. Pandoc, a popular Haskell document-converter, is rich in
properties that test e.g., for symmetry over conversions.

8 CONCLUSION

The goal of this paper is to introduce a new automatic program
repair approach based on types and compiler suggestions, in addi-
tion to utilizing properties for repair fitness and fault localization.
To that end, we implemented ProPR, a Haskell tool that utilizes
GHC for patch-generation and can evaluate properties as well as
unit tests. We provided a dataset with 30 programs and their unit
tests and properties. On this dataset we performed an empirical
study to compare the repair rates for different test suites and search-
algorithms, and manually inspect the generated patches.

Our analysis of 230 patches show that we reach an effective
repair rate of 10%-13% (comparable to other state-of-the-art tools)
but have a reduced rate of overfitting (from 85% to 63% when apply-
ing properties). The novel approach for patch generation produces
a greatly increased search space and promising patches on man-
ual inspection. We observed that properties did not increase the
number of programs for which patches were found, but solutions
were less overfit and found faster. Overfitting based on unit tests
persisted into the combined test suite. Similarly, we have observed
that properties can produce cases of overfitting too.

Our results attest to the stronger utilization of language-features
for patch generation to overcome the redundancy assumption, i.e.,
only reusing existing code. Using the compiler’s information on
types and scopes, the created patches are semantically correct and
come in a much greater variety, which was reported as a missing
feature for many APR tools. Our manual analysis motivates to use
the generated patches (if not directly applicable) as guidance for
fault localization or to improve the test suite.

9 ONLINE RESOURCES

ProrR is available on GitHub under MIT-license at https://github.
com/Tritlo/PropR. The reproduction package which includes the
data, evaluation and a binary of PRrorPR is available on Zenodo
https://doi.org/10.5281/zenodo.5389051

ACKNOWLEDGMENTS

We thank Matthew Sottile for his feedback on the implementation
of PROPR, as well as Martin Monperrus for advice on the evaluation.
We also thank the reviewers for their insightful feedback.

This work was partially supported by the Wallenberg Al, Au-
tonomous Systems and Software Program (WASP) funded by the
Knuth and Alice Wallenberg Foundation. The members of TU Delft
were partially funded by ICAI Al for Fintech Research, an ING - TU
Delft collaboration.

https://github.com/pholser/junit-quickcheck
https://pandoc.org/
https://www.haskell.org/alex/
https://github.com/Tritlo/PropR
https://github.com/Tritlo/PropR
https://doi.org/10.5281/zenodo.5389051

ICSE °22, May 21-29, 2022, Pittsburgh, PA, USA

REFERENCES

(1]

A

[7

[

&

=

[10]

[1

[12

(13

=
=t

[15]

[16]

(17

[18

Rui Abreu, Peter Zoeteweij, Rob Golsteijn, and Arjan J.C. van Gemund. 2009. A
practical evaluation of spectrum-based fault localization. Journal of Systems and
Software 82, 11 (2009), 1780-1792. https://doi.org/10.1016/].js5.2009.06.035 SI:
TAIC PART 2007 and MUTATION 2007.

Wasi Uddin Ahmad, Saikat Chakraborty, Baishakhi Ray, and Kai-Wei Chang.
2021. Unified Pre-training for Program Understanding and Generation.
arXiv:2103.06333 [cs.CL]

Chang Wook Ahn and R.S. Ramakrishna. 2003. Elitism-based compact genetic
algorithms. IEEE Transactions on Evolutionary Computation 7, 4 (2003), 367-385.
https://doi.org/10.1109/TEVC.2003.814633

Mahmoud Alfadel, Diego Elias Costa, Emad Shihab, and Mouafak Mkhallalati.
2021. On the Use of Dependabot Security Pull Requests. In 2021 IEEE/ACM 18th
International Conference on Mining Software Repositories (MSR). IEEE, 254-265.
Andrea Arcuri and Gordon Fraser. 2011. On parameter tuning in search based
software engineering. In International Symposium on Search Based Software Engi-
neering. Springer, 33-47.

Karthikeyan Bhargavan, Antoine Delignat-Lavaud, Cédric Fournet, Anitha Gol-
lamudi, Georges Gonthier, Nadim Kobeissi, Natalia Kulatova, Aseem Rastogi,
Thomas Sibut-Pinote, Nikhil Swamy, and Santiago Zanella-Béguelin. 2016. For-
mal Verification of Smart Contracts: Short Paper (PLAS ’16). Association for
Computing Machinery, New York, NY, USA, 91-96. https://doi.org/10.1145/
2993600.2993611

Mark Chen, Jerry Tworek, Heewoo Jun, Qiming Yuan, Henrique Ponde de
Oliveira Pinto, Jared Kaplan, Harri Edwards, Yuri Burda, Nicholas Joseph, Greg
Brockman, Alex Ray, Raul Puri, Gretchen Krueger, Michael Petrov, Heidy Khlaaf,
Girish Sastry, Pamela Mishkin, Brooke Chan, Scott Gray, Nick Ryder, Mikhail
Pavlov, Alethea Power, Lukasz Kaiser, Mohammad Bavarian, Clemens Winter,
Philippe Tillet, Felipe Petroski Such, Dave Cummings, Matthias Plappert, Fo-
tios Chantzis, Elizabeth Barnes, Ariel Herbert-Voss, William Hebgen Guss, Alex
Nichol, Alex Paino, Nikolas Tezak, Jie Tang, Igor Babuschkin, Suchir Balaji, Shan-
tanu Jain, William Saunders, Christopher Hesse, Andrew N. Carr, Jan Leike, Josh
Achiam, Vedant Misra, Evan Morikawa, Alec Radford, Matthew Knight, Miles
Brundage, Mira Murati, Katie Mayer, Peter Welinder, Bob McGrew, Dario Amodei,
Sam McCandlish, Ilya Sutskever, and Wojciech Zaremba. 2021. Evaluating Large
Language Models Trained on Code. arXiv:2107.03374 [cs.LG]

Koen Claessen and John Hughes. 2000. QuickCheck: A Lightweight Tool for
Random Testing of Haskell Programs. In Proceedings of the Fifth ACM SIGPLAN
International Conference on Functional Programming (ICFP "00). Association for
Computing Machinery, New York, NY, USA, 268-279. https://doi.org/10.1145/
351240.351266

Zhen Yu Ding. 2020. Patch Quality and Diversity of Invariant-Guided Search-
Based Program Repair. arXiv preprint arXiv:2003.11667 (2020).

Massimiliano Dominici. 2014. An overview of Pandoc. TUGboat 35, 1 (2014),
44-50.

Thomas Durieux, Fernanda Madeiral, Matias Martinez, and Rui Abreu. 2019.
Empirical Review of Java Program Repair Tools: A Large-Scale Experiment on
2,141 Bugs and 23,551 Repair Attempts. In Proceedings of the 27th ACM Joint
European Software Engineering Conference and Symposium on the Foundations of
Software Engineering (ESEC/FSE °19). https://arxiv.org/abs/1905.11973

Thomas Durieux and Martin Monperrus. 2016. DynaMoth: Dynamic Code Syn-
thesis for Automatic Program Repair. In Proceedings of the 11th International
Workshop on Automation of Software Test (Austin, Texas) (AST ’16). Association
for Computing Machinery, New York, NY, USA, 85-91. https://doi.org/10.1145/
2896921.2896931

Thomas Durieux and Martin Monperrus. 2016. IntroClassjava: A Benchmark
of 297 Small and Buggy Java Programs. Technical Report. Universite Lille 1.
https://hal.archives-ouvertes.fr/hal-01272126/document

Khashayar Etemadi, Nicolas Harrand, Simon Larsen, Haris Adzemovic, Henry Lu-
ong Phu, Ashutosh Verma, Fernanda Madeiral, Douglas Wikstrom, and Martin
Monperrus. 2021. Sorald: Automatic Patch Suggestions for SonarQube Static
Analysis Violations. arXiv preprint arXiv:2103.12033 (2021).

Gordon Fraser and Andrea Arcuri. 2011. EvoSuite: Automatic Test Suite Gen-
eration for Object-Oriented Software. In Proceedings of the 19th ACM SIGSOFT
Symposium and the 13th European Conference on Foundations of Software Engi-
neering (Szeged, Hungary) (ESEC/FSE ’11). Association for Computing Machinery,
New York, NY, USA, 416-419. https://doi.org/10.1145/2025113.2025179

Ali Ghanbari and Lingming Zhang. 2019. PraPR: Practical Program Repair via
Bytecode Mutation. In 2019 34th IEEE/ACM International Conference on Automated
Software Engineering (ASE). 1118-1121. https://doi.org/10.1109/ASE.2019.00116
GHC Contributors. 2021. GHC 8.10.4 users guide. https://downloads.haskell.
org/~ghc/8.10.4/docs/html/users_guide/index.html

Andy Gill and Colin Runciman. 2007. Haskell Program Coverage. In Proceedings
of the ACM SIGPLAN Workshop on Haskell Workshop (Freiburg, Germany) (Haskell
’07). Association for Computing Machinery, New York, NY, USA, 1-12. https:
//doi.org/10.1145/1291201.1291203

[19

[20

[21]

[22

[23

[24

[25

'S
=

w
—

™
S

[33

[34

@
i

[36

[37

[38

@
0,

[40

[41

Matthias Pall Gissurarson, Leonhard Applis, et al.

Matthias Pall Gissurarson. 2018. Suggesting Valid Hole Fits for Typed-Holes
(Experience Report). In Proceedings of the 11th ACM SIGPLAN International Sym-
posium on Haskell (St. Louis, MO, USA) (Haskell 2018). Association for Comput-
ing Machinery, New York, NY, USA, 179-185. https://doi.org/10.1145/3242744.
3242760

Divya Gopinath, Muhammad Zubair Malik, and Sarfraz Khurshid. 2011.
Specification-Based Program Repair Using SAT. In Tools and Algorithms for the
Construction and Analysis of Systems, Parosh Aziz Abdulla and K. Rustan M. Leino
(Eds.). Springer Berlin Heidelberg, Berlin, Heidelberg, 173-188.

Zheng Guo, Michael James, David Justo, Jiaxiao Zhou, Ziteng Wang, Ranjit Jhala,
and Nadia Polikarpova. 2019. Program Synthesis by Type-Guided Abstraction
Refinement. Proc. ACM Program. Lang. 4, POPL, Article 12 (dec 2019), 28 pages.
https://doi.org/10.1145/3371080

Richard Hamlet. 1994. Random testing. Encyclopedia of software Engineering 2
(1994), 971-978.

John Henry Holland et al. 1992. Adaptation in natural and artificial systems: an
introductory analysis with applications to biology, control, and artificial intelligence.
MIT press.

Michael B. James, Zheng Guo, Ziteng Wang, Shivani Doshi, Hila Peleg, Ranjit
Jhala, and Nadia Polikarpova. 2020. Digging for Fold: Synthesis-Aided API
Discovery for Haskell. Proc. ACM Program. Lang. 4, OOPSLA, Article 205 (nov
2020), 27 pages. https://doi.org/10.1145/3428273

Susumu Katayama. 2011. MagicHaskeller: System demonstration. In Proceed-
ings of AAIP 2011 4th International Workshop on Approaches and Applications of
Inductive Programming. 63.

Christoph Kern and Mark R. Greenstreet. 1999. Formal Verification in Hardware
Design: A Survey. ACM Trans. Des. Autom. Electron. Syst. 4, 2 (apr 1999), 123-193.
https://doi.org/10.1145/307988.307989

Edward Kmett. 2021. The lens library. https://hackage.haskell.org/package/lens
Xianglong Kong, Lingming Zhang, W Eric Wong, and Bixin Li. 2015. Experi-
ence report: How do techniques, programs, and tests impact automated program
repair?. In 2015 IEEE 26th International Symposium on Software Reliability Engi-
neering (ISSRE). IEEE, 194-204.

Rainer Koschke. 2007. Survey of Research on Software Clones. In Duplication,
Redundancy, and Similarity in Software (Dagstuhl Seminar Proceedings, 06301),
Rainer Koschke, Ettore Merlo, and Andrew Walenstein (Eds.). Internationales
Begegnungs- und Forschungszentrum fur Informatik (IBFI), Schloss Dagstuhl,
Germany, Dagstuhl, Germany. http://drops.dagstuhl.de/opus/volltexte/2007/962
Christoph Kreitz. 1998. Program synthesis. In Automated Deduction—A Basis for
Applications. Springer, 105-134.

Claire Le Goues, Yuriy Brun, Stephanie Forrest, and Westley Weimer. 2017. Clar-
ifications on the Construction and Use of the ManyBugs Benchmark. IEEE
Transactions on Software Engineering 43, 11 (2017), 1089-1090.

Claire Le Goues, Stephanie Forrest, and Westley Weimer. 2013. Current challenges
in automatic software repair. Software Quality Journal 21, 3 (2013), 421-443.
https://doi.org/10.1007/s11219-013-9208-0

Claire Le Goues, Neal Holtschulte, Edward K Smith, Yuriy Brun, Premkumar
Devanbu, Stephanie Forrest, and Westley Weimer. 2015. The ManyBugs and
IntroClass benchmarks for automated repair of C programs. IEEE Transactions
on Software Engineering 41, 12 (2015), 1236-1256.

Claire Le Goues, ThanhVu Nguyen, Stephanie Forrest, and Westley Weimer. 2012.
GenProg: A Generic Method for Automatic Software Repair. IEEE Transactions
on Software Engineering 38, 1 (2012), 54-72. https://doi.org/10.1109/TSE.2011.104
Junho Lee, Dowon Song, Sunbeom So, and Hakjoo Oh. 2018. Automatic Diagnosis
and Correction of Logical Errors for Functional Programming Assignments.
Proc. ACM Program. Lang. 2, OOPSLA, Article 158 (oct 2018), 30 pages. https:
//doi.org/10.1145/3276528

Thibaud Lutellier, Hung Viet Pham, Lawrence Pang, Yitong Li, Moshi Wei, and
Lin Tan. 2020. Coconut: combining context-aware neural translation models
using ensemble for program repair. In Proceedings of the 29th ACM SIGSOFT
international symposium on software testing and analysis. 101-114.

David Mandelin, Lin Xu, Rastislav Bodik, and Doug Kimelman. 2005. Jungloid
Mining: Helping to Navigate the API Jungle. In Proceedings of the 2005 ACM SIG-
PLAN Conference on Programming Language Design and Implementation (Chicago,
IL, USA) (PLDI ’05). Association for Computing Machinery, New York, NY, USA,
48-61. https://doi.org/10.1145/1065010.1065018

Matias Martinez, Thomas Durieux, Romain Sommerard, Jifeng Xuan, and Martin
Monperrus. 2017. Automatic repair of real bugs in java: a large-scale experiment
on the defects4j dataset. Empirical Software Engineering 22, 4 (2017), 1936-1964.
https://doi.org/10.1007/s10664-016-9470-4 arXiv:1811.02429

Matias Martinez and Martin Monperrus. 2016. ASTOR: A Program Repair Library
for Java. In Proceedings of ISSTA. https://doi.org/10.1145/2931037.2948705
Matias Martinez and Martin Monperrus. 2019. Astor: Exploring the design
space of generate-and-validate program repair beyond GenProg. Journal of
Systems and Software 151 (2019), 65-80. https://doi.org/10.1016/j.jss.2019.01.069
arXiv:1802.03365

Matias Martinez, Westley Weimer, and Martin Monperrus. 2014. Do the Fix Ingre-
dients Already Exist? An Empirical Inquiry into the Redundancy Assumptions

https://doi.org/10.1016/j.jss.2009.06.035
https://arxiv.org/abs/2103.06333
https://doi.org/10.1109/TEVC.2003.814633
https://doi.org/10.1145/2993600.2993611
https://doi.org/10.1145/2993600.2993611
https://arxiv.org/abs/2107.03374
https://doi.org/10.1145/351240.351266
https://doi.org/10.1145/351240.351266
https://arxiv.org/abs/1905.11973
https://doi.org/10.1145/2896921.2896931
https://doi.org/10.1145/2896921.2896931
https://hal.archives-ouvertes.fr/hal-01272126/document
https://doi.org/10.1145/2025113.2025179
https://doi.org/10.1109/ASE.2019.00116
https://downloads.haskell.org/~ghc/8.10.4/docs/html/users_guide/index.html
https://downloads.haskell.org/~ghc/8.10.4/docs/html/users_guide/index.html
https://doi.org/10.1145/1291201.1291203
https://doi.org/10.1145/1291201.1291203
https://doi.org/10.1145/3242744.3242760
https://doi.org/10.1145/3242744.3242760
https://doi.org/10.1145/3371080
https://doi.org/10.1145/3428273
https://doi.org/10.1145/307988.307989
https://hackage.haskell.org/package/lens
http://drops.dagstuhl.de/opus/volltexte/2007/962
https://doi.org/10.1007/s11219-013-9208-0
https://doi.org/10.1109/TSE.2011.104
https://doi.org/10.1145/3276528
https://doi.org/10.1145/3276528
https://doi.org/10.1145/1065010.1065018
https://doi.org/10.1007/s10664-016-9470-4
https://arxiv.org/abs/1811.02429
https://doi.org/10.1145/2931037.2948705
https://doi.org/10.1016/j.jss.2019.01.069
https://arxiv.org/abs/1802.03365

PrOPR: Property-Based Automatic Program Repair

[42

[43]

[44

[45

[46

[47

[48]

[49

[50]

[51]

[52]

[53

[54

[55

[56]

[57

[58]

(59

[60

[62]

of Program Repair Approaches. In Companion Proceedings of the 36th Interna-
tional Conference on Software Engineering (Hyderabad, India) (ICSE Companion
2014). Association for Computing Machinery, New York, NY, USA, 492-495.
https://doi.org/10.1145/2591062.2591114

Ehsan Mashhadi and Hadi Hemmati. 2021. Applying CodeBERT for Automated
Program Repair of Java Simple Bugs. arXiv preprint arXiv:2103.11626 (2021).
Catherine A Meadows. 1994. Formal verification of cryptographic protocols: A
survey. In International Conference on the Theory and Application of Cryptology.
Springer, 133-150.

Sergey Mechtaev, Jooyong Yi, and Abhik Roychoudhury. 2016. Angelix: Scalable
Multiline Program Patch Synthesis via Symbolic Analysis. In Proceedings of the
38th International Conference on Software Engineering (Austin, Texas) (ICSE ’16).
Association for Computing Machinery, New York, NY, USA, 691-701. https:
//doi.org/10.1145/2884781.2884807

Geoffrey Neumann, Mark Harman, and Simon Poulding. 2015. Transformed
Vargha-Delaney Effect Size. In Search-Based Software Engineering, Marcio Barros
and Yvan Labiche (Eds.). Springer International Publishing, Cham, 318-324.
Amirfarhad Nilizadeh, Gary T. Leavens, Xuan-Bach D. Le, Corina S. Pasireanu,
and David R. Cok. 2021. Exploring True Test Overfitting in Dynamic Automated
Program Repair using Formal Methods. In 2021 14th IEEE Conference on Software
Testing, Verification and Validation (ICST). 229-240. https://doi.org/10.1109/
ICST49551.2021.00033

Renaud Pawlak, Martin Monperrus, Nicolas Petitprez, Carlos Noguera, and Lionel
Seinturier. 2015. Spoon: A Library for Implementing Analyses and Transforma-
tions of Java Source Code. Software: Practice and Experience 46 (2015), 1155-1179.
https://doi.org/10.1002/spe.2346

Ricardo Pefia. 2017. An introduction to liquid haskell.
arXiv:1701.03320 (2017).

Thorsten Pohlert. 2014. The pairwise multiple comparison of mean ranks package
(PMCMR). R package 27, 2019 (2014), 9.

Nadia Polikarpova, Ivan Kuraj, and Armando Solar-Lezama. 2016. Program
Synthesis from Polymorphic Refinement Types. In Proceedings of the 37th ACM
SIGPLAN Conference on Programming Language Design and Implementation (Santa
Barbara, CA, USA) (PLDI ’16). Association for Computing Machinery, New York,
NY, USA, 522-538. https://doi.org/10.1145/2908080.2908093

Nadia Polikarpova, Deian Stefan, Jean Yang, Shachar Itzhaky, Travis Hance, and
Armando Solar-Lezama. 2020. Liquid Information Flow Control. Proc. ACM
Program. Lang. 4, ICFP, Article 105 (aug 2020), 30 pages. https://doi.org/10.1145/
3408987

Yuhua Qi, Xiaoguang Mao, and Yan Lei. 2013. Efficient Automated Program
Repair through Fault-Recorded Testing Prioritization. In 2013 IEEE International
Conference on Software Maintenance. 180-189. https://doi.org/10.1109/ICSM.2013.
29

Yuhua Qi, Xiaoguang Mao, Yan Lei, Ziying Dai, and Chengsong Wang. 2014. The
strength of random search on automated program repair. In Proceedings of the
36th International Conference on Software Engineering. 254-265.

Zichao Qi, Fan Long, Sara Achour, and Martin Rinard. 2015. An Analysis of
Patch Plausibility and Correctness for Generate-and-Validate Patch Generation
Systems. In Proceedings of the 2015 International Symposium on Software Testing
and Analysis (Baltimore, MD, USA) (ISSTA 2015). Association for Computing
Machinery, New York, NY, USA, 24-36. https://doi.org/10.1145/2771783.2771791
Michel Raymond and Francois Rousset. 1995. An Exact Test for Population
Differentiation. Evolution 49, 6 (1995), 1280-1283. http://www.jstor.org/stable/
2410454

Patrick Redmond, Gan Shen, and Lindsey Kuper. 2021. Toward Hole-Driven
Development with Liquid Haskell. arXiv preprint arXiv:2110.04461 (2021).
Patrick M Rondon, Ming Kawaguci, and Ranjit Jhala. 2008. Liquid types. In
Proceedings of the 29th ACM SIGPLAN Conference on Programming Language
Design and Implementation. 159-169.

Colin Runciman, Matthew Naylor, and Fredrik Lindblad. 2008. Smallcheck and
lazy smallcheck: automatic exhaustive testing for small values. Acm sigplan
notices 44, 2 (2008), 37-48.

Ripon K Saha, Yingjun Lyu, Hiroaki Yoshida, and Mukul R Prasad. 2017. Elixir:
Effective object-oriented program repair. In 2017 32nd IEEE/ACM International
Conference on Automated Software Engineering (ASE). IEEE, 648-659.

Saurabh Srivastava, Sumit Gulwani, and Jeffrey S. Foster. 2010. From Program Ver-
ification to Program Synthesis. In Proceedings of the 37th Annual ACM SIGPLAN-
SIGACT Symposium on Principles of Programming Languages (Madrid, Spain)
(POPL ’10). Association for Computing Machinery, New York, NY, USA, 313-326.
https://doi.org/10.1145/1706299.1706337

Chadi Trad, Rawad Abou Assi, Wes Masri, and Fadi Zaraket. 2018. CFAAR:
Control Flow Alteration to Assist Repair. In 2018 IEEE International Symposium
on Software Reliability Engineering Workshops (ISSREW). IEEE, 208-215.

Simon Urli, Zhongxing Yu, Lionel Seinturier, and Martin Monperrus. 2018. How
to design a program repair bot? insights from the repairnator project. In 2018
IEEE/ACM 40th International Conference on Software Engineering: Software Engi-
neering in Practice Track (ICSE-SEIP). IEEE, 95-104.

arXiv preprint

(63

[64]

[65

[66]

o
=

(68

[69]

[70]

[72]

[73

ICSE °22, May 21-29, 2022, Pittsburgh, PA, USA

Andras Vargha and Harold D Delaney. 2000. A critique and improvement of
the CL common language effect size statistics of McGraw and Wong. Journal of
Educational and Behavioral Statistics 25, 2 (2000), 101-132.

Niki Vazou, Leonidas Lampropoulos, and Jeff Polakow. 2017. A Tale of Two
Provers: Verifying Monoidal String Matching in Liquid Haskell and Coq. SIGPLAN
Not. 52, 10 (sep 2017), 63-74. https://doi.org/10.1145/3156695.3122963

Ke Wang, Rishabh Singh, and Zhendong Su. 2017. Dynamic neural program
embedding for program repair. arXiv preprint arXiv:1711.07163 (2017).

Ming Wen, Junjie Chen, Rongxin Wu, Dan Hao, and Shing-Chi Cheung. 2017.
An empirical analysis of the influence of fault space on search-based automated
program repair. arXiv preprint arXiv:1707.05172 (2017).

Qi Xin. 2017. Towards Addressing the Patch Overfitting Problem. In 2017
IEEE/ACM 39th International Conference on Software Engineering Companion
(ICSE-C). 489-490. https://doi.org/10.1109/ICSE-C.2017.42

Qi Xin and Steven P. Reiss. 2017. Identifying test-suite-overfitted patches
through test case generation. ISSTA 2017 - Proceedings of the 26th ACM SIG-
SOFT International Symposium on Software Testing and Analysis (2017), 226-236.
https://doi.org/10.1145/3092703.3092718

Qi Xin and Steven P Reiss. 2017. Leveraging syntax-related code for automated
program repair. In 2017 32nd IEEE/ACM International Conference on Automated
Software Engineering (ASE). IEEE, 660-670.

He Ye, Matias Martinez, Thomas Durieux, and Martin Monperrus. 2021. A
comprehensive study of automatic program repair on the QuixBugs benchmark.
Journal of Systems and Software 171 (2021), 110825.

Zhongxing Yu, Matias Martinez, Benjamin Danglot, Thomas Durieux, and Martin
Monperrus. 2017. Test case generation for program repair: A study of feasibility
and effectiveness. arXiv preprint arXiv:1703.00198 (2017).

Yuan Yuan and Wolfgang Banzhaf. 2017. ARJA: Automated repair of Java pro-
grams via multi-objective genetic programming. arXiv 46, 10 (2017), 1040-1067.
arXiv:1712.07804

Qiangian Zhu, Annibale Panichella, and Andy Zaidman. 2018. An investigation
of compression techniques to speed up mutation testing. In 2018 IEEE 11th Inter-
national Conference on Software Testing, Verification and Validation (ICST). IEEE,
274-284.

https://doi.org/10.1145/2591062.2591114
https://doi.org/10.1145/2884781.2884807
https://doi.org/10.1145/2884781.2884807
https://doi.org/10.1109/ICST49551.2021.00033
https://doi.org/10.1109/ICST49551.2021.00033
https://doi.org/10.1002/spe.2346
https://doi.org/10.1145/2908080.2908093
https://doi.org/10.1145/3408987
https://doi.org/10.1145/3408987
https://doi.org/10.1109/ICSM.2013.29
https://doi.org/10.1109/ICSM.2013.29
https://doi.org/10.1145/2771783.2771791
http://www.jstor.org/stable/2410454
http://www.jstor.org/stable/2410454
https://doi.org/10.1145/1706299.1706337
https://doi.org/10.1145/3156695.3122963
https://doi.org/10.1109/ICSE-C.2017.42
https://doi.org/10.1145/3092703.3092718
https://arxiv.org/abs/1712.07804

	Abstract
	1 Introduction
	2 Background and Related Work
	2.1 Property-Based Testing
	2.2 Haskell, GHC & Typed Holes
	2.3 GenProg, Genetic Program Repair & Patch Representation
	2.4 Repair of Formally Verified Programs & Program Synthesis

	3 Technical Details — PropR
	3.1 Compiler-Driven Mutation
	3.2 Fixes
	3.3 Checking Fixes
	3.4 Search
	3.5 Looping and Finalizing Results

	4 Empirical Study
	4.1 Research Questions
	4.2 Dataset
	4.3 Methodology / Experiment Design

	5 Results
	6 Discussion
	7 Threats to Validity
	8 Conclusion
	9 Online Resources
	Acknowledgments
	References

