PropPR: Property-Based Automatic Program Repair

Matthias Pall Gissurarson® Leonhard Applis® Annibale Panichella
Chalmers University of Technology TU Delft TU Delft
Gothenburg, Sweden Delft, Netherlands Delft, Netherlands
pallm@chalmers.se L.H.Applis@Tudelft.nl A.Panichella@Tudelft.nl

Arie van Deursen David Sands
TU Delft Chalmers University of Technology
Delft, Netherlands Gothenburg, Sweden
Arie.vanDeursen@Tudelft.nl dave@chalmers.se

ICSE "22, May 21-29, 2022, Pittsburgh, PA, USA

CHALMERS TU Delft

Introduction

Overview - Background

* Program repair is a set of techniques used
to find patches to repair faulty programs

* Property-based testing is a form of
randomized testing based on declaring
properties

* Typed-holes are a way to interact with the

compiler by asking about the context of a

given |Ocati0n_ GHCi> let degreesToRadians :: Double -> Double
degreesToRadians d = d = _ / 180

<interactive>:4:30: error:
- Found hole: _ :: Double
In the expression: d *x _ / 180
Valid hole fits include

d :: Double (bound at <interactive>:4:22)

prop_1 :: Double —= Test
prop_1l x =
sin x == sin (x+2#*mn)

prop_2 :: Double —= Test

prop_2 x =
sin (-1#x) == -1 % (sin x)
prop_3 :: Test
prop_3 = sin (n/2) == 1
prop_4 :: Test

prop_4 = 5in @ == @

pi :: forall a. Floating a => a (imported from ‘Prelude’)

Challenges in Program Repair

* Heavy use of frameworks & meta-programming libraries

* Overfitting on "just passing tests"

* Limited search-space
(patterns and existing code)

* Combining partial solutions

Source

The PROPR Way to do it e o

\ Rebind In Properties Failing Properties

1l

* Integrate with the compiler

iHaskell Program Coverage

ct Bindings
\\ |
Targets Fault localization

o T Fault-involveld Expressions
* Use properties to avoid overfitting oo
A < Fi)fes Perforated %xpressions
13

* Typed-based synthesis to extend Cantitte Btvation L

|
i)

Se a rC h S p a Ce ‘ Search Algorithm | «—— Candidate Fixes

* Genetic programming to combine
partial solutions

Detailed Approach

Source

O,

Properties — | QuickCheck | —

Rebind In Properties
Inspect Bindings

K—) Targets

Apply Fixes

O,

Diff «—— Fixes

Candidate Selection

Candidate Evaluation

|
Search Algorithm

Test Properties

N\

Failing Properties

1

Haskell Program Coverage

Fault localization

l

Fault-involved Expressions

Perforation

!

Perforated Expressions

1
GHC + Plugin

|
Hole-Fit Synthesis

l

«—— Candidate Fixes

Figure 3: The PrRoOPR test-localize-synthesize-rebind loop

gcd' :: Int — Int — Int
gcd' © b = ged' O b
gcd' a b | b ==0 = a
gcd' a b =1if a > b
then ged' (a-b) b
else gcd' a (b-a)

prop_1l = gcd' 1071 1029 == 21
prop_2 x = gcd' 0 x == X

Source gcd' :: Int — Int — Int

VFD _ gcd' © b = ged' O b
Properties — | QuickCheck . @
Test Properties gcd' ab b == 0 = 3
| | _1_\ | gcd' a b = if a > b
Rebind In Properties Failing Plropertles then gc d’ Ca—b) b
Inspect Bindings Haskell Program Coverage else ngl a (b_a)
\ﬁ o prop_1l = gcd' 1071 1029 == 21
Targets Fault localization _ I —_—
l prop_2 x = gcd' 0 x == X

@ Fault-involved Expressions

Apply Fixes |
Perforation
Diff «——— Fixes l _
Perforated Expressions
1

Candidate Selection

GHC + Plugin

Candidate Evaluation . | .
| Hole-Fit Synthesis

l

Search Algorithm | «—— Candidate Fixes

Figure 3: The PrRoOPR test-localize-synthesize-rebind loop

SourczD Propertles gcd' :: Int — Int — Int

QuickCheck | — Test Properties @ ng : o0 gcil_l ° t_)
gcd' a b | b ==0 = a
Rebind In Properties Failing?roperties ng 'ab=1fa>b
l then ged' (a-b) b
Inspect Bindings@ Haskell Program Coverage e-l- se g Cd 'a (b_a-)

Kﬁ 5 prop_l = gcd' 1071 1029 == 21
Targets

Fault localization

l
@ Fault-involved Expressions

prop_2 x = gcd' 0 x == X

Apply Fixes |
Perforation
Diff «——— Fixes l _
Perforated Expressions
1

Candidate Selection

GHC + Plugin

Candidate Evaluation . | .
| Hole-Fit Synthesis

l

Search Algorithm | «—— Candidate Fixes

Figure 3: The PrRoOPR test-localize-synthesize-rebind loop

Source

O,

Properties — | QuickCheck

—_—

Targets
®

Rebind In Properties

Inspect Bindings
K—) Targets
Apply Fixes

Diff «—— Fixes

Candidate Selection

Candidate Evaluation

Test Properties

N\

Failing Properties

1

Haskell Program Coverage

Fault localization

l
@ Fault-involved Expressions

|
Perforation
!

Perforated Expressions

1
GHC + Plugin

|
Hole-Fit Synthesis

l

Search Algorithm

«—— Candidate Fixes

Figure 3: The PrRoOPR test-localize-synthesize-rebind loop

gcd' :: Int — Int — Int
gcd' © b = ged' O b
gcd' a b | b ==0 = a
gcd' a b =1if a > b
then ged' (a-b) b
else gcd' a (b-a)
prop_1l = gcd' 1071 1029 == 21

prop_2 X

==liii'|0 X == X

Source

Properties —

Rebind In

Inspect Bindings

K—) Targets

Failing Properties

QuickCheck | —

O,

Apply Fixes

Diff «——— Fixes

Candidate Selection

Candidate Evaluation

Search Algorithm

Properties

Test Properties

Failing Properties

Fault localization

l

Fault-involved Expressions

Perforation

l

Perforated Expressions

1
GHC + Plugin

|
Hole-Fit Synthesis

l

«—— Candidate Fixes

Figure 3: The PrRoOPR test-localize-synthesize-rebind loop

gcd' :: Int — Int — Int
gcd' © b = ged' O b
gcd' a b | b ==0 = a
gcd' a b =1if a > b
then ged' (a-b) b

Haskell Program Coverage g(:dl © 0 else ngl a (b_a-)

prop_1l = gcd' 1071 1029 == 21
prop_2 x = gcd' 0 x == X

Source Fault-involved EXPI’CSSiOl’lS gcd' :: Int = Int — Int

Properties — | QuickCheck | — O ng b= ng 6 b
Test Properties ngl ab | b ==0 = a
_— i ged' a b = if a > b
ebind In Properties ailing Properties
l then ged' (a-b) b
1
Inspect Bindings@ Haskell Program Coverage ng 00 else ng' a (b—a)
N 5 prop_1 = gcd' 1071 1029 == 21
Targets Fault localization — | —_
prop_2 x = gcd' 0 x == X
®
Apply Fixes o
Perforation
Diff «——— Fixes ! _
Perforated Expressions
1

Candidate Selection

GHC + Plugin

Candidate Evaluation _ | .
| Hole-Fit Synthesis

l

Search Algorithm | «—— Candidate Fixes

Figure 3: The PrRoOPR test-localize-synthesize-rebind loop

sowee Perforated Expressions gcd' :: 1nt — Int — Int

] I —
Properties — | QuickCheck | — oot ; () 9 cj 0 E |
est Properties gc ' a h == (0 = a

| | N ged' a b = if a > b
Rebind In Properties Failing Properties

| | then gecd' (a-b) b
Inspect Bindings Haskell Program Coverage ng 00 else ng 'a Cb_a-)

\\\\+ 5 prop_1l = gcd' 1071 1029 == 21
Targets

Fault localization

| prop_2 x = gcd' 0 x == X

Fault-involved Expressions
Apply Fixes® | P

Perforation

Diff +——— Fixes .
Perforated Expressions

1
GHC + Plugin

Candidate Evaluation . | .
| Hole-Fit Synthesis

l

Search Algorithm | «—— Candidate Fixes

Candidate Selection

Figure 3: The PrRoOPR test-localize-synthesize-rebind loop

Source

O,

Candidate Fixes

Properties — | QuickCheck | —

Test Properties

Rebind In

Inspect Bindings

N\

Properties Failing Properties

1

Haskell Program Coverage

|
K*) Targets Fault localization®

l
@ Fault-involved Expressions

Apply Fixes |

Diff «—— Fixes

Candidate Selection

Candidate Evaluation

Perforation
1

Perforated Expressions

1
GHC + Plugin

|
| Hole-Fit Synthesis

Search Algorithm Candidate Fixes

Figure 3: The PrRoOPR test-localize-synthesize-rebind loop

gecd' :: Int — Int — Int
gcd' 0 b = _
gcd' a b | b==0 = a
gcd' a b =1if a > b
then gecd' (a-b) b

gcd' 0 © else gcd' a (b-a)

prop_1l = gcd' 1071 1029 == 21
prop_2 x = gcd' 0 x == X
minBound :: forall a. Bounded a = a
0, 1071, 1029, 21 :: Int

b :: Int

suwee — (Candidate Evaluation ged' :: Int — Int — Int

© 1
Properties —» | QuickCheck | — et p . (@ ng O b= E
° mﬁims gcd' ab | b==0=a
’ I — 1 >
Rebind In Properties Failing Properties ng a b if a b
l 4" 0 6 then ged' (a-b) b
Inspect Bindings Haskell Program Coverage gc else acd' a (b—a.)
N 5 prop_1l = gcd' 1071 1029 == 21
Targets Fault localization _ ' L
: | prop_2 x = gcd' 0 x == X
ApplyFixes® Fault'inmlve'dEXpreSSionS minBound :: forall a. Bounded a = a
Perforation 0, 1071, 1029, 21 :: Int
Diff +———— Fixes ! _ b :: Int
. Perforated Expressions
1
Candidate Selection -
GHC + Plugin

Candidate Evaluation) | . @
Hole-Fit Synthesis

l

Search Algorithm | «—— Candidate Fixes

Figure 3: The ProOPR test-localize-synthesize-rebind loop

Source

O,

Fixes

Properties — | QuickCheck | —

Rebind In

Inspect Bindings

Test Properties

N\

Properties Failing Properties

1

Haskell Program Coverage

|
\ Targets Fault localization@

’ l
@ Fault-involved Expressions

Apply Fixes |

Perforation

O,
Diff | Fixes| !

Candidate Selection

Candidate

Perforated Expressions

1
GHC + Plugin

Evaluation) | .
| Hole-Fit Synthesis

l

Search Algorithm | «—— Candidate Fixes

Figure 3: The ProOPR test-localize-synthesize-rebind loop

——— a/examples/BrokenGCD. hs

+++ b/examples/BrokenGCD.hs

@@ -16,3 +16,3 @@ gcd' 0 b = gcd' © b
-gcd' @ b = gcd' O b

+gcd' © b = Db

gcd' ab | b==0=a

Demo

Experiment & Results

Experiment Setup

Property
Test Suite

Combined
Test Suite

Unit
Test Suite

* 30 student programs from Chalmers

* Each fails 1 or more of 23 properties and
20 unit tests

* 3 test-suites, 3 search algorithms, 5
Seeds amount to 31 Configurations

* 5 minute search budget per configuration

Patches

Results * Genetic search found all patches of exhaustive
search

* Random search did not find any patches
2enetic (search space too big?)

Exhaustive

——— Randorm * The combined test-suite found patches the fastest

ARE]L

« 13 / 30 programs patched,
213 patches in total

* 63-85% overfit (manual analysis)

* 4 programs effectively repaired
(13% repair rate)

diff --git a//input/expr_both.hs b//input/expr_both.hs
o ——— a//input/expr_both.hs
Manual Analysis .o
y @@ -44,6 +44,6 @@ showExpr Var = "x"
showExpr Var = "x"
showExpr (Num i) = show i
-showExpr (NormOp Add x y) showExpr x ++ "+" ++ showExpr y
+showExpr (NormOp Add x y) ((filter (not . isSpace)) (showExpr x ++ "+" ++ showExpr y))
showExpr (NormOp Mul x y) showFactor x ++ "*" ++ showFactor y
showExpr (TrigExpr Sin expr) = "sin " ++ "(" ++ showExpr expr ++ ")"
showExpr (TrigExpr Cos expr) = "cos " ++ "(" ++ showExpr expr ++ ")"

A seemingly good patch?

Overfitting clarifies test-suite issues

Test-suite issues persist in the
combined test-suite

Sophisticated patches

Overfit patches give hint at what
needs to be fixed

Future Work

* Industry-based datasets and configurations
* Improved fault-localization and synthesis

* Automated feedback systems for GitHub
and teaching

e Co-evolution of tests and code

See you at ICSE!

PropPr is available at:

ions?
Questions? Ask us github.com/Tritlo/PropR

@tritlo and
@lapplislazuli on Twitter

