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Introduction



Overview - Background

* Program repair is a set of techniques used
to find patches to repair faulty programs

* Property-based testing is a form of
randomized testing based on declaring
properties

* Typed-holes are a way to interact with the

compiler by asking about the context of a

given |Ocati0n_ GHCi> let degreesToRadians :: Double -> Double
degreesToRadians d = d = _ / 180

<interactive>:4:30: error:
- Found hole: _ :: Double
In the expression: d *x _ / 180
Valid hole fits include

d :: Double (bound at <interactive>:4:22)

prop_1 :: Double —= Test
prop_1l x =
sin x == sin (x+2#*mn)

prop_2 :: Double —= Test

prop_2 x =
sin (-1#x ) == -1 % (sin x)
prop_3 :: Test
prop_3 = sin (n/2) == 1
prop_4 :: Test

prop_4 = 5in @ == @

pi :: forall a. Floating a => a (imported from ‘Prelude’)



Challenges in Program Repair

* Heavy use of frameworks & meta-programming libraries

* Overfitting on "just passing tests"

* Limited search-space
(patterns and existing code)

* Combining partial solutions
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Detailed Approach
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Figure 3: The PrRoOPR test-localize-synthesize-rebind loop

gcd' :: Int — Int — Int
gcd' © b = ged' O b
gcd' a b | b ==0 = a
gcd' a b =1if a > b
then ged' (a-b) b
else gcd' a (b-a)

prop_1l = gcd' 1071 1029 == 21
prop_2 x = gcd' 0 x == X
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minBound :: forall a. Bounded a = a
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b :: Int
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——— a/examples/BrokenGCD. hs

+++ b/examples/BrokenGCD.hs

@@ -16,3 +16,3 @@ gcd' 0 b = gcd' © b
-gcd' @ b = gcd' O b

+gcd' © b = Db

gcd' ab | b==0=a



Demo



Experiment & Results



Experiment Setup

Property
Test Suite

Combined
Test Suite

Unit
Test Suite

* 30 student programs from Chalmers

* Each fails 1 or more of 23 properties and
20 unit tests

* 3 test-suites, 3 search algorithms, 5
Seeds amount to 31 Configurations

* 5 minute search budget per configuration

Patches




Results * Genetic search found all patches of exhaustive
search

* Random search did not find any patches
2enetic (search space too big?)

Exhaustive

——— Randorm * The combined test-suite found patches the fastest

ARE]L

« 13 / 30 programs patched,
213 patches in total

* 63-85% overfit (manual analysis)

* 4 programs effectively repaired
(13% repair rate)



diff --git a//input/expr_both.hs b//input/expr_both.hs
o ——— a//input/expr_both.hs
Manual Analysis .o
y @@ -44,6 +44,6 @@ showExpr Var = "x"
showExpr Var = "x"
showExpr (Num i) = show i
-showExpr (NormOp Add x y) showExpr x ++ "+" ++ showExpr y
+showExpr (NormOp Add x y) ((filter (not . isSpace)) (showExpr x ++ "+" ++ showExpr y))
showExpr (NormOp Mul x y) showFactor x ++ "*" ++ showFactor y
showExpr (TrigExpr Sin expr) = "sin " ++ "(" ++ showExpr expr ++ ")"
showExpr (TrigExpr Cos expr) = "cos " ++ "(" ++ showExpr expr ++ ")"

A seemingly good patch?

Overfitting clarifies test-suite issues

Test-suite issues persist in the
combined test-suite

Sophisticated patches

Overfit patches give hint at what
needs to be fixed



Future Work

* Industry-based datasets and configurations
* Improved fault-localization and synthesis

* Automated feedback systems for GitHub
and teaching

e Co-evolution of tests and code



See you at ICSE!

PropPr is available at:

ions?
Questions? Ask us github.com/Tritlo/PropR

@tritlo and
@lapplislazuli on Twitter




