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ABSTRACT

Types indexed with extra type-level information are a powerful
tool for statically enforcing domain-specific security properties. In
many cases, this extra information is runtime-irrelevant, and so it
can be completely erased at compile-time without degrading the
performance of the compiled code. In practice, however, the added
bureaucracy often disrupts the development process, as program-
mers must completely adhere to new complex constraints in order
to even compile their code.

In this work we present WRIT, a plugin for the GHC Haskell
compiler that relaxes the type checking process in the presence of
runtime-irrelevant constraints. In particular, WRIT can automati-
cally coerce between runtime equivalent types, allowing users to
run programs even in the presence of some classes of type errors.
This allows us to gradually secure our code while still being able to
compile at each step, separating security concerns from functional
correctness.

Moreover, we present a novel way to specify which types should
be considered equivalent for the purpose of allowing the program
to run, how ambiguity at the type level should be resolved and
which constraints can be safely ignored and turned into warnings.
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1 PROGRAMMINGWITH TYPE

CONSTRAINTS

Enforcing domain-specific properties is a complicated task that
developers are forced to carefully address when designing com-
plex systems. In the functional programming realm, strongly-typed
languages like Haskell are an advantage since one can use the type
system to enforce domain-specific constraints! However, this tech-
nique is not without flaws. To illustrate some of the issues with this
technique, suppose we are writing a library for information-flow
control over labeled pure values – loosely inspired by the MAC li-
brary by Russo [13]. For simplicity, we assume that the only labels
are L for public and H for secret data. Then, we can use phantom
types [3, 8] to label arbitrary data with security labels:

data Label = L | H

newtype Labeled (l :: Label) a = Labeled a

As an example, the value Labeled 42 :: Labeled L Int
represents a public integer, whereas Labeled "1234" :: Labeled
H String represents a secret string. It is important to note that
in Haskell, newtypes are representationally equal to the type they
wrap, meaning that the runtime representation of Labeled 42 is
the same as the one for 42. Later, labeled values can be combined
according to different security policies using type constraints [6, 7],
as an example, we can enforce that no information flows from H to
L by defining the empty type class:

class ((l :: Label) <= (l' :: Label))

and defining instances of (<=) only for the flows we allow:

instance (L <= L)
instance (L <= H)
instance (H <= H)

Since there is no instance for the forbidden flow H <= L, any
code that triggers the constraint H <= L during compilation will
produce a type error. Note that the class (<=) has no methods, so
it is represented by a computationally-irrelevant empty dictionary
at runtime.

We can now use (<=) to implement combinators over labeled
values that ensure that secrets do not leak into public data, e.g. the
familiar zip combinator can be given the type:

zip :: (x <= z, y <= z) => Labeled x [a]
-> Labeled y [b]
-> Labeled z [(a, b)]

where (x <= z, y <= z) ensures that the label z of the output is
greater or equal to both its inputs. Then, the definition:

bad :: Labeled L [(Usr, Pwd)]
bad = zip (Labeled [11111, 222222] :: Labeled L [Usr])

(Labeled ["hun", "ter2"] :: Labeled H [Pwd])
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will be rejected by GHC with a generic error indicating that we are
missing a type class instance for the forbidden flow:

error: No instance for H <= L (...)

and indeed, we can see that there is a leak from the secret passwords
in the list ["hun","ter2"] to the public list [(11111,"hun"),
(222222,"ter2")]. Ouch!

As shown so far, we can use Haskell’s type system to accom-
modate domain-specific constraints about security labels using
phantom types and type classes. Although this is a powerful strat-
egy when it comes to writing domain-specific libraries [1, 9, 12, 16],
it can be hard to use in practice:

• The code cannot be run unless it is provably secure, preventing
users from testing the functional correctness of the program
separately from its security properties.

• Users must tag all their data with an explicit Label, and can-
not use features such as pattern matching without explicitly
unwrapping and rewrapping the labels.

• Moreover, they need to tag both the secret and the public data,
even though there might exist a sane default tag.

• The type errors are too general and hard to understand for users
unfamiliar with Haskell’s type system, and;

• Synthesizing type based suggestions [5] becomes harder, due to
domain-specific constraints and ambiguous types.

2 WEAKENING RUNTIME-IRRELEVANT

TYPING

In GHC, type checking is based on constraint-based type inference.
Albeit intricate in practice, the algorithm works by traversing the
code to accumulate a set of type constraints (defined as part of the
type system specification) and then invokes the constraint solver
to solve those constraints [19]. In the latest GHC, constraints come
in three main flavours [17]:

• Givens from type signatures, for which we have evidence,

• Wanteds from expressions, for which we want evidence,

• Deriveds, which are constraints that any solution must satisfy
but we do not require evidence of (e.g. equalities arising from
functional dependencies and superclasses).

The constraint solver solves the wanteds with respect to the givens
and the typing rules of GHC (which include creating and unify-
ing type variables), making sure that the solution satisfies the de-
riveds [17, 19]. This process is capable of type checking complex
programs, but isn’t perfect when it comes to domain-specific con-
straints like (<=).

Luckily, the type checker can be extended with plugins to handle
additional type checking rules, for example to simplify naturals or
invoking an SMT solver [4, 10]. Type checker plugins are invoked
by the compiler in order to a) simplify givens, where a plugin
might find a contradiction, and, b) whenever there are unsolved
constraints that the type checker could not solve.

For the purpose of weakening the type checking of runtime-
irrelevant types, we developedWRIT,1a plugin that extends GHC’s
type system by adding the rules seen in Figure 1 for when type
checking would not be able to proceed otherwise. Users of the
plugin can selectively apply these rules to runtime-irrelevant con-
straints and equalities bywriting instances of the Ignore, Discharge,
Promote, and Default type families [14, 20] as described in the rest
of this section.

2.1 Ignoring Runtime-Irrelevant Constraints

In Haskell, users can define empty typeclasses that have nomethods
(like (<=)), which represent runtime-irrelevant constraints. How-
ever, we would like to be able to turn these constraints into compile
time warnings, so that functional correctness of the program can
be verified separately from its security. The Ignore rule applies
whenever there is an unsolved empty typeclass constraint with an
instance of the Ignore family:
type family Ignore (c :: Constraint) :: Message

By defining an instance of the Ignore family for (<=):
type instance Ignore (H <= L) =

Msg (Text "Found forbidden flow from H to L!")

Users can specify that the constraint H <= L can be ignored with
the message shown above. With this instance in scope andWRIT
enabled, the error for the bad function defined earlier will be turned
into the following warning:
warning: Found forbidden flow from H to L!

2.2 Discharging Runtime-Irrelevant Equalities

With runtime-irrelevant types, we often want to ignore nominal
equalties of the form a ∼ b, which are specially handled GHC
primitives. As an example, we might want to turn L ∼ H into a
warning when compiling insecure programs. The Discharge rule
applies to unsolved equalities of the form a ∼ b, for which there is
an instance of the Discharge family for a and b:
type family Discharge (a :: k) (b :: k) :: Message

By defining an instance of Discharge for L and H:
type instance Discharge L H =

Msg (Text "Using a public L as a secret H!")

Users can allow L ∼ H with the message shown above. This in con-
junction with ignoring H <= L effectively negates any guarantees
that our library provides.

2.3 Promoting Representationally-

Equivalent Types

A special case of discharging is when a and b have the kind (*),
the kind of base types in Haskell. Discharging the equality a ∼ b
effectively promotes a to b, meaning that a is treated as a b. This is
only runtime-irrelevant when a and b have the same runtime rep-
resentation, making a ∼ b runtime-irrelevant. This coincides with
the Coercible constraint in GHC [2], so to handle this common
case we define Promote:
type family Promote (a :: *) (b :: *) :: Message

1The WRIT plugin is available at https://github.com/tritlo/writ-plugin.
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And define an instance of Discharge for types of kind (*):
type instance Discharge (a :: *) (b :: *) =

OnlyIf (Coercible a b) (Promote a b)

Then, by defining an instance of Promote for labeled values:
type instance Promote a (Labeled l a) =

Msg (Text "Promoting unlabeled " :<>: ShowType a
:<>: Text " to " :<>: ShowType (Labeled l a))

Users can use any base type a (like Int) as a Labeled l a, where l
is either L or H, e.g., it becomes possible to write: [1,2] :: Labeled
L [Int], where [1,2] is promoted and treated as a public [Int].

2.4 Defaulting Runtime-Irrelevant Type

Variables

When programming using runtime-irrelevant types, it frequently
occurs that the type of a phantom type variable cannot be inferred.
However, it is often the case that there is a “sane” value to choose
when there are no restrictions, such as the label L for labeled data.
The Default rule applies whenever there is an unsolved constraint
with a free type variable of kind 𝑘 for which there is an instance of
the Default family:
type family Default k :: k

By defining an instance of the Default family for Label:
type instance Default Label = L

Users can specify that any free type variables of kind Label in an
unsolved constraint should be set to L.

Now With Less Cruft! After defining the instances as shown
above,WRIT can use them to weaken our library’s domain-specific
constraints. Users can then easily express and run (possibly in-
secure) programs operating on labeled values as if they had the
underlying type without overhead:
labeledOr :: Labeled L [Bool] -> Labeled L Bool
labeledOr (x:xs) = if x then True else labeledOr xs
labeledOr _ = True

2.5 Ensuring Runtime-Irrelevance

Since it is not always safe to ignore or discharge, we allow users to
recover some safety by using the OnlyIf constructor, as used above
in the Discharge instance for (*) to assert Coercible. The On-
lyIf rule is used to unravel F𝑎1 . . . 𝑎𝑛 ∼ Msg𝑚𝑏 ’ when F𝑎1 . . . 𝑎𝑛
reduces to an OnlyIf 𝑐𝑚𝑎 , and adds the additional constraints 𝑐 and
𝑚𝑎 ∼ 𝑚𝑏 as obligations. This eventually results in an equality of
the form Msg𝑚𝑎 ∼ Msg𝑚𝑏 , causing GHC to unify 𝑚𝑏 with 𝑚𝑎 ,
inferring the message to be emitted. Note that OnlyIf 𝑎 𝑏 only holds
if both 𝑎 and 𝑏 hold, and 𝑏 is only emitted if 𝑎 holds.

2.6 Turning Type-Errors into Warnings

To model the fact that we often want to turn type-errors into warn-
ings, all our rules produce a set of messages,𝑀 , which is a union
of the messages produced by any obligations. The Discharge and
Ignore rule add a user defined message to the set, whereas the
Default rule adds a standardized message. The user defined mes-
sages are built using GHC’s user type-error combinators, which
allows them to use type families to compute the message [15]. The
resulting set of messages is reported as warnings at the end of

type checking, or alternatively as type-errors, if the user passes the
plugin the keep-errors flag.

3 IMPLEMENTATION

WRIT operates by examining the wanted and derived constraints
passed to the plugin by GHC. Messages are handled as a set of
logs with type variables for the messages and their origin. The
logs are finalized before they are output, with the type variables
representing messages are replaced with the messages themselves.

The plugin applies the Default rule by generating constraints
of the form a ∼ Default k for any free type variable a of kind k
in unsolved constraints, Then, e.g. Default Label will reduce to
L, and the variable a is set to L in the context. In Haskell there are
two types of type variables, rigid and flexible. Rigid type variables
are variables mentioned in the givens, i.e. the constraints. Flexible
type variables are type variables instantiated from a forall. For
example, in return :: Monad m => a -> m a, m is a rigid
type variable, while a is flexible type variable. When we default a
type variable, we must distinguish between rigid and flexible type
variables: for rigid type variables, the generated constraints take
the form of a given, with assertion from WRIT that a is equivalent
to Default Label as the evidence. For flexible type variables, we
do not require evidence, so it suffices to emit a derived to unify a
with Default Label.

For the Ignore rule, the plugin asserts that the constraint holds,
which corresponds to the empty typeclass having an instance. It also
emits a constraint that applying the Ignore family to the constraint
results in a message wrapped in the Msg constructor, and adds it to
the set of messages as a new type variable that will unify with the
message itself.

Similarly for the Discharge rule, WRIT generates a proof by
assertion that a ∼ b holds (e.g. L ∼ H), and adds the obligation that
Discharge𝑎 𝑏 reduces to a Msg𝑚, with the fresh flexible type vari-
able𝑚 added to the set of messages𝑀 . The evidence is an assertion
in the form of a zero-cost coercion [2], which is safe for runtime-
irrelevant types which have the same runtime representation.

WRIT applies the OnlyIf rule by generating an assertion that
OnlyIf 𝑐𝑚𝑎 ∼𝑚𝑏 and checking that both 𝑐 and𝑚𝑎 ∼𝑚𝑏 hold. As
an optimization, we solve equalities of the form:

OnlyIf 𝑐1 (OnlyIf 𝑐2 (. . . (OnlyIf 𝑐𝑛 Msg𝑚𝑎))) ∼ Msg𝑚𝑏

by checking all the constraints 𝑐1, . . . , 𝑐𝑛 and Msg𝑚𝑎 ∼ Msg𝑚𝑏 ,
causing GHC to unify𝑚𝑎 with𝑚𝑏 .

4 CONCLUSIONS AND FUTUREWORK

We presented WRIT, a type checker plugin for GHC to weaken the
type checking process for runtime-irrelevant constraints and rep-
resentationally-equivalent types. We believe our work will facilitate
developers to adopt more secure programming practices in Haskell
with less overhead, since it is now possible to start doing so in a
more gradual manner. As this is a work in progress, there are a few
avenues for future work:

Safety. TheWRIT plugin gives users a lot of freedom and allows
them to override the typing rules used in Haskell. We have yet to
investigate which rules can be safely defined by the user, what can



Γ,Default𝑘, 𝑎 ∼ Default𝑘 ⊢ 𝑐 : Constraint, 𝑀
Γ, 𝑎 : 𝑘 ∈ FV(𝑐),Default𝑘 ⊢ 𝑐 : Constraint, 𝑀 ∪ {𝑚def}

Default
Γ, Ignore 𝑐 ⊢ Ignore 𝑐 ∼ Msg𝑚, 𝑀

Γ, Ignore 𝑐 ⊢ 𝑐 : Constraint, 𝑀 ∪ {𝑚}
Ignore

Γ,Discharge𝑎 𝑏 ⊢ Discharge𝑎 𝑏 ∼ Msg𝑚, 𝑀

Γ,Discharge𝑎 𝑏 ⊢ 𝑎 ∼ 𝑏, 𝑀 ∪ {𝑚}
Discharge

Γ ⊢ 𝑐 : Constraint, 𝑀𝑐 Γ ⊢𝑚𝑎 ∼𝑚𝑏 , 𝑀

Γ ⊢ OnlyIf 𝑐𝑚𝑎 ∼𝑚𝑏 , 𝑀𝑐 ∪𝑀
OnlyIf

Figure 1: The typing rules that WRIT extends GHC’s type system with. The judgement Γ, F𝑎1 . . . 𝑎𝑛 ⊢ 𝑐, 𝑀 here judges that

with an instance F𝑎1 . . . 𝑎𝑛 in the context the constraint (or equality) 𝑐 holds with the set of output messages𝑀 . Here, we write

𝑐 : Constraint to denote a well formed constraint 𝑐, and𝑚
def

is a compiler generated message based on the source expression.

go wrong if they define an invalid rule, and whether we can prevent
users from defining such rules.

Overlaps. Neither the compiler plugin nor the formalization deal
with what happens when the user defined instances overlap, which
can cause the typing rules of WRIT to overlap and it is unclear
which one to choose. In the plugin itself, this is handled by pre-
ferring Discharge to Ignore and Ignore to Default. It is clear
however that the choice should not affect the semantics of the com-
piled program (something yet to be proven), but which typing rule
is preferred can affect the errors or warnings emitted in the process.
One possibility is to design a heuristic that selects the most specific
typing rule applicable, to emit more concrete (and useful) messages,
as opposed to more generic ones.

Dynamic and Gradual Typing. We want to investigate how relaxing
the type checking process could interact with Haskell’s dynamic
typing capabilities [11]. Whenever the type checker finds two ex-
pression producing a type mismatch error, it might be possible to
promote them both to Haskell’s dynamic representation, Dynamic.
In this light, the invalid list expression [42, "hello"] could be
promoted to a list of dynamic values by promoting both 42 and
"hello" to a unified dynamic representation, i.e. [42, "hello"]
:: [Dynamic]. Then, dynamically typed values could be demoted
to concrete types via runtime checks inserted automatically. This
mechanism could shorten the gap betweenHaskell, a strongly typed
language, and dynamically typed languages like Python or Erlang
by simply toggling a compiler plugin, enabling us to do module-
based gradual typing [18].
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