
Suggesting Valid Hole Fits for Typed-Holes
(Experience Report)

Matthías Páll Gissurarson
Chalmers University of Technology, Sweden

pallm@chalmers.se

Abstract
Type systems allow programmers to communicate a partial
specification of their program to the compiler using types,
which can then be used to check that the implementation
matches the specification. But can the types be used to aid
programmers during development? In this experience report
I describe the design and implementation of my lightweight
and practical extension to the typed-holes of GHC that im-
proves user experience by adding a list of valid hole fits and
refinement hole fits to the error message of typed-holes. By
leveraging the type checker, these fits are selected from iden-
tifiers in scope such that if the hole is substituted with a valid
hole fit, the resulting expression is guaranteed to type check.

CCS Concepts • Software and its engineering→ Com-
pilers; Software development techniques;

Keywords GHC, Typed-Holes, Valid Hole Fits, Suggestions
ACM Reference Format:
Matthías Páll Gissurarson. 2018. Suggesting Valid Hole Fits for
Typed-Holes (Experience Report). In Proceedings of the 11th ACM
SIGPLAN International Haskell Symposium (Haskell ’18), September
27-28, 2018, St. Louis, MO, USA. ACM, New York, NY, USA, 7 pages.
https://doi.org/10.1145/3242744.3242760

1 Introduction
When writing documentation for libraries, the Haskell com-
munity often goes the route of having descriptive function
names and clear types that leverage type synonyms in order
to push much of the documentation to the type-level. As
developers program in Haskell, they often use a style of pro-
gramming called Type-Driven Development. They write out
the input and output types of functions before writing the
functions themselves [3]. A consequence of this approach

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies
are not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. Copyrights
for components of this work owned by others than the author(s) must
be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee. Request permissions from permissions@acm.org.
Haskell ’18, September 27-28, 2018, St. Louis, MO, USA
© 2018 Copyright held by the owner/author(s). Publication rights licensed
to ACM.
ACM ISBN 978-1-4503-5835-4/18/09. . . $15.00
https://doi.org/10.1145/3242744.3242760

is that the compiler has a lot of type information that is
only used during type checking. Can we make better use
of the extra information and type-level documentation and
improve user experience? According to the GitHub survey
[5], user experience is the third most important factor when
choosing open source software, after stability and security,
and thus an important consideration.
We can leverage the richness of type information in li-

brary documentation along with users’ type signatures by
extending typed-hole error messages with a list of valid hole
fits and refinement hole fits. These allow users to find relevant
functions and constants when a typed-hole is encountered:

Found hole: _ :: [Int] -> Int
In the expression: _ :: [Int] -> Int
In an equation for ‘it’: it = _ :: [Int] -> Int
Relevant bindings include

it :: [Int] -> Int (bound at <interactive>:4:1)
Valid hole fits include

head :: forall a. [a] -> a
last :: forall a. [a] -> a
length :: forall (t :: * -> *) a. Foldable t => t a -> Int
maximum :: forall (t :: * -> *) a.

(Foldable t, Ord a) => t a -> a
minimum :: forall (t :: * -> *) a.

(Foldable t, Ord a) => t a -> a
product :: forall (t :: * -> *) a.

(Foldable t, Num a) => t a -> a
(Some hole fits suppressed; use
-fmax-valid-hole-fits=N or -fno-max-valid-hole-fits)

Valid refinement hole fits include
foldl1 (_ :: Int -> Int -> Int)

where foldl1 :: forall (t :: * -> *) a. Foldable t =>
(a -> a -> a) -> t a -> a

foldr1 (_ :: Int -> Int -> Int)
where foldr1 :: forall (t :: * -> *) a. Foldable t =>

(a -> a -> a) -> t a -> a
foldl (_ :: Int -> Int -> Int) (_ :: Int)
where foldl :: forall (t :: * -> *) b a. Foldable t =>

(b -> a -> b) -> b -> t a -> b
foldr (_ :: Int -> Int -> Int) (_ :: Int)
where foldr :: forall (t :: * -> *) a b. Foldable t =>

(a -> b -> b) -> b -> t a -> b
($) (_ :: [Int] -> Int)
where ($) :: forall a b. (a -> b) -> a -> b

const (_ :: Int)
where const :: forall a b. a -> b -> a

(Some refinement hole fits suppressed;
use -fmax-refinement-hole-fits=N
or -fno-max-refinement-hole-fits)

Figure 1. Typed-hole error message extended with hole fits.

https://doi.org/10.1145/3242744.3242760
https://doi.org/10.1145/3242744.3242760

Haskell ’18, September 27-28, 2018, St. Louis, MO, USA Matthías Páll Gissurarson

Valid hole fits and refinement hole fits can be used to
effectively aid development in many scenarios by allowing
users to view and search type-level documentation directly,
thus improving the user experience.

Note: in the interest of reducing noise in the output in this
report, I have opted to show only the fits themselves, and not
the type application nor provenance of the fit as displayed in
the ouput by default. The amount of detail in the output is
controlled by flags; the format used here is achieved by set-
ting the -funclutter-valid-hole-fits flag. An example
of the full default output can be seen in figure 2.

product :: forall (t :: * -> *) a.
(Foldable t, Num a) => t a -> a

with product @[] @Int
(imported from ‘Prelude’
(and originally defined in ‘Data.Foldable’))

Figure 2. The full output for a fit for _ :: [Int] -> Int.

1.1 Contributions
In this experience report, I do the following:
• Describe valid hole fits and refinement hole fits as I have
implemented them in GHC. Valid hole fits allow users
to tap in to the extra type information available during
compilation or interactively using GHCi, while refine-
ment hole fits extend valid hole fits beyond identifiers
to find functions that need additional arguments.
• Provide a detailed explanation of how I have imple-
mented valid hole fits and refinement hole fits in GHC,
and how I solved technical hurdles along the way.
• Show the usefulness of hole fits in case studies on an
introductory exercise and when using the lens library.
• Finally, I present an application of valid hole fits to
libraries using type-in-type to annotate functions with
non-functional properties, and show an example.

1.2 Background
Typed-Holes in GHC were introduced in version 7.8 and
implemented by Simon Peyton Jones, Sean Leather and Thijs
Alkemade [7]. Inspired by a similar feature in Agda, typed-
holes allow a user of GHC to have “holes” in their code, using
an underscore (_) in place of an expression. When GHC en-
counters a typed-hole, it generates an error with information
about that hole, such as its location, the (possibly inferred)
type of the hole and relevant local bindings [4]. Typed-holes
can also be given names by appending characters, e.g. _a
and _b, to allow users to distinguish between holes.
Valid Hole Fits: We use the type information available in

typed-holes to make them more useful for programmers, by
extending the typed-hole error message with a list of valid
hole fits. Valid hole fits are expressions which the hole can be
replaced with directly, and the resulting expression will type
check. An example of valid hole fits can be seen in figure 1.

Refinement Hole Fits: It is often the case that a single
identifier is not enough to implement the desired function,
such as when writing the product function (foldr (*) 1).
To suggest useful hole fits for these cases, we introduce
refinement hole fits. Refinement hole fits are valid hole fits
that have one or more additional holes in them. The number
of additional holes is controlled by the refinement level, set
via -frefinement-level-hole-fits. A refinement level of
N means that hole fits with up to N additional holes in them
will be considered. An example of refinement hole fits can
be seen in figure 1, in which the refinement level is 2.

2 Case Studies
To show that valid hole fits and refinement hole fits can be
used to effectively aid development, we consider two cases,
an introductory programming exercise where we use the
Prelude and an advanced case using the lens library.

2.1 Exercise from Programming in Haskell
To study how the valid hole fits perform when used by begin-
ners, I looked at an example from Graham Hutton’s introduc-
tory text, Programming in Haskell [9]. In exercise 4.8.1, stu-
dents are asked to implement halve :: [a] -> ([a],[a]),
which should split a list of even length into two halves. With
refinement hole fits enabled, we can query GHCi by writing:
Prelude> _ :: [a] -> ([a], [a])

In response, GHCi will then generate a typed-hole error,
including a list of valid refinement hole fits:
Valid refinement hole fits include

break (_ :: a1 -> Bool)
where break :: forall a.

(a -> Bool) -> [a] -> ([a], [a])
span (_ :: a1 -> Bool)
where span :: forall a.

(a -> Bool) -> [a] -> ([a], [a])
splitAt (_ :: Int)

where splitAt :: forall a. Int -> [a] -> ([a], [a])
mapM (_ :: a1 -> ([a1], a1))
where mapM :: forall (t :: * -> *) (m :: * -> *) a b.

(Traversable t, Monad m) =>
(a -> m b) -> t a -> m (t b)

traverse (_ :: a1 -> ([a1], a1))
where traverse :: forall (t :: * -> *) (f :: * -> *) a b.

(Traversable t, Applicative f) =>
(a -> f b) -> t a -> f (t b)

const (_ :: ([a1], [a1]))
where const :: forall a b. a -> b -> a

(Some refinement hole fits suppressed;
use -fmax-refinement-hole-fits=N
or -fno-max-refinement-hole-fits)

One of the suggested fits is the splitAt (_ :: Int) re-
finement, and given that the task is to split a list, this seems
like a good fit. In this way, the student can discover the
splitAt function from the prelude, and a correct solution
(halve xs = splitAt (length xs `div` 2) xs) is easy
to find using refinement hole fits.

Suggesting Valid Hole Fits for Typed-Holes Haskell ’18, September 27-28, 2018, St. Louis, MO, USA

2.2 The Lens Library
In the lens library [10], the functions can be hard to find
with Hoogle (see section 5), due to the library’s extensive use
of type synonyms. As an example, consider the following:
import Control.Lens
import Control.Monad.State

newtype T = T { _v :: Int }

val :: Lens' T Int
val f (T i) = T <$> f i

updT :: T -> T
updT t = t &~ do

_ val (1 :: Int)

For the hole in the above, the typed-hole message includes:
Found hole:

_ :: ((Int -> f0 Int) -> T -> f0 T) -> Int -> State T a0

where f0 and a0 are ambiguous type variables. Searching
for this type signature in Hoogle (version 5.0.17) yields no
results from the lens library.
When valid hole fits are available, GHC will output the

following list of valid hole fits:
Valid hole fits include
(#=) :: forall s (m :: * -> *) a b. MonadState s m =>

ALens s s a b -> b -> m ()
(<#=) :: forall s (m :: * -> *) a b. MonadState s m =>

ALens s s a b -> b -> m b
(<*=) :: forall s (m :: * -> *) a. (MonadState s m,

Num a) => LensLike' ((,) a) s a -> a -> m a
(<+=) :: forall s (m :: * -> *) a. (MonadState s m,

Num a) => LensLike' ((,) a) s a -> a -> m a
(<-=) :: forall s (m :: * -> *) a. (MonadState s m,

Num a) => LensLike' ((,) a) s a -> a -> m a
(<<*=) :: forall s (m :: * -> *) a. (MonadState s m,

Num a) => LensLike' ((,) a) s a -> a -> m a
(Some refinement hole fits suppressed;
use -fmax-refinement-hole-fits=N
or -fno-max-refinement-hole-fits)

Though the names of the functions are opaque, we see that
integrating the valid hole fits into the typed-holes and inte-
grating with the type checker itself is a clear win, allowing
us to find a mulitude of relevant functions from lens.

3 Implementation
The valid hole fit suggestions for typed-holes are imple-
mented as an extension to the error reporting mechanism
of GHC, and are only generated during error reporting of
holes. This means that we can emphasize utility rather than
performance, as any overhead will only be incurred when
the program would in any case fail due to an error.

3.1 Inputs & Outputs
The entry into the valid hole fit search is the function called
findValidHoleFits in the TcHoleErrors module 1:
1Available in GHC HEAD at:
http://git.haskell.org/ghc.git/blob/refs/heads/master:/compiler/typecheck/TcHoleErrors.hs

findValidHoleFits :: TidyEnv -- Type env for zonking
-> [Implication] -- Enclosing implics

-- containing givens
-> [Ct] -- Unsolved simple constraints

-- in the implic for the hole.
-> Ct -- The hole constraint itself
-> TcM (TidyEnv, SDoc)

This function takes the hole constraint that caused the error,
the unsolved simple constraints that were in the same set
of wanted constraints as the hole constraint, and the list
of implications which that set was nested in. The tidy type
environment at that point of error reporting is also passed to
the function, and used later for zonking 2. To zonk, we use
zonkTidyTcType :: TidyEnv -> TcType -> TcM (TidyEnv, TcType)

from TcMType, which uses the tidy type environment to
ensure that the resulting types are consistent with the rest
of the error message and other error messages. The function
returns the (possibly) updated tidy type environment and
the message containing the valid hole fits.

3.2 Relevant Constraints
The unsolved simple constraints are constraints imposed by
the call-site of the hole. As an example, consider the holes
_a and _b in the following:
f :: Show a => a -> String
f x = show (_b (show _a))

Here, the type of _a and the return type _b need to fulfill
a show constraint. These constraints constitute the set of
unsolved simple constraints {Show ta, Show tb}, where ta
is the type of _a, and String -> tb is the type of _b. Since
valid hole fits are only considered for one hole at a time, the
unsolved simple constraints are filtered to only contain con-
straints relevant to the current hole. For hole _a, this would
be {Show ta}, and for hole _b this would be {Show tb}. This
is done by discarding those constraints whose types do not
share any free type variables with the type of the hole. I call
this filtered set of constraints the relevant constraints.

3.3 Candidates
Candidate hole fits are identifiers gathered from the environ-
ment. We consider only the elements in the global reader and
the local bindings at the location of the hole (discarding any
shadowed bindings). The global reader contains identifiers
that are imported or defined at the top-level of the mod-
ule. Using the local bindings allows us to include candidates
bound by pattern matching (such as function arguments) or
in let or where clauses. As an example, in:
f (x:xs) = let a = () in _

where k = head xs

the global reader elements considered as candidates are the
functions in the Prelude and f, while the local binding can-
didates are f, x, xs, a and k. When shadowed bindings are
2In the context of GHC, zonking is when a type is traversed and mutable
type variables are replaced with the real types they dereference to.

http://git.haskell.org/ghc.git/blob/refs/heads/master:/compiler/typecheck/TcHoleErrors.hs

Haskell ’18, September 27-28, 2018, St. Louis, MO, USA Matthías Páll Gissurarson

removed, the f from the global reader is discarded. For global
elements, a lookup is performed in the type checker to find
their associated identifiers, discarding any elements not as-
sociated with an identifier or data constructor (like type
constructors or type variables). Candidates from GHC.Err
(like undefined) are discarded, since they can be made to
match any type at all, and are unlikely to be the function
that the user is looking for.

3.4 Checking for Fit
Each of these candidates is checked in turn by invoking
the tcCheckHoleFit function. This function starts by cap-
turing the set of constraints and wrapper emitted by the
tcSubType_NC function when invoked on the type of the
candidate and the type of the hole. The tcSubType_NC func-
tion takes in two types and returns the core wrapper needed
to go from one type to the other, emitting the constraints
which must be satisfied for the types to match. The relevant
constraints are added to this set of constraints, to ensure that
any constraints imposed by the call-site of the hole are satis-
fied as well. This extended set is wrapped in the implications
that the hole was nested in, so that any givens contained in
the implications (such as that a satisfies the show constraint
in the example above) are passed along. These are passed
to the simplifier, which checks the constraints. If the set is
soluble, the candidate is a valid hole fit, and the wrapper is
returned. The wrapper is used later to show how the type
of the fit matches the type of the hole by showing the type
application, like product @[] @Int in figure 2.

3.5 Refinement hole fits
For refinement hole fits, N fresh flexible type variables are
created, a1, . . . ,aN , where N is the refinement level set by
the -frefinement-level-hole-fits flag.We then look for
fits not for the type of the hole, th , but for the type a1 →
· · · → aN → th . These additional type variables allow us to
emulate additional holes in the expression. To limit the num-
ber of refinement hole fits, additional steps are taken after we
have checked whether the type fits, to check whether all the
fresh type variables ended up being unified with a concrete
type. This ensures that fits involving fresh variables such
as id (_ :: a1 -> a2 -> a) (_ :: a1) (_ :: a2) are
discarded unless explicitly requested by the user by passing
the -fabstract-refinement-hole-fits flag. If a match is
found, the fresh type variables are zonked and the type they
were unified with read off them, allowing us to show the
types of the additional holes (like Int -> Int -> Int for
the hole in the foldl1 (_ :: Int -> Int -> Int) fit).

3.6 Sorting the Output
As with relevant bindings, only 6 valid hole fits are displayed
by default. To increase the utility of the valid hole fits, we sort
the fits by relevance, which is approximated in two ways.

Sorting by Size: The default approximation sorts by the
size of unique types in the type application needed to go
from the type of the fit to the type of the hole, as defined by
the core expression wrapper returned when the fit was found.
The size is computed by applying the sizeTypes function,
which counts the number of variables and constructors:

Table 1. Sizes of matches for _ :: String -> [String]

Fit Type Application Size
lines String -> [String] 0
repeat a -> [a] String 2
mempty Monoid a => a String -> [String] 6

Only unique types are considered, since fits that require
many different types are in some sense “farther away” than
fits that require only a few unique types. This method is
faster and returns a reasonable ordering in most cases.

Sorting by Subsumption: The other approximation is
enabled by the -fsort-by-subsumption-hole-fits flag.
When sorting by subsumption, a subsumption graph is con-
structed by checking all the fits that have been found for
whether they can be used in place of any other found fit.
A directed graph is made, in which the nodes are fits and
the edges are the result of the subsumption check, where fit
a has an edge to fit b fit if b could be used anywhere that
a could be used. An example of such a graph can be seen
in figure 3. The fits are sorted by a topological sort on this
graph, so that if b could be used anywhere a could be used,
then b appears after a in the output. This ordering ensures
that more specific fits (such as those with the same type as
the hole) appear earlier than more abstract, general fits.

lines
words

read

repeat
return pure

mempty
fail

Figure 3. The subsumption graph for matches for
_ :: String -> [String]. Here lines would come before
repeat, read, and fail, repeat before mempty and return, etc.

3.7 Dealing with Side-effects
When GHC simplifies constraints, it does so by side-effect
on the type variables involved and the evidence contained
within implications. To ensure that checks for fits do not
affect later checks, we must encapsulate these side-effects.

UsingQuantification: My first (naive) approach to avoid
side-effects was to wrap the type with any givens from the
implications and quantifying any free type variables, which
meant that any effects on the variables only affected fresh
variables introduced by the type checker during simplifica-
tion. However, this approach rejected some valid hole fits and

Suggesting Valid Hole Fits for Typed-Holes Haskell ’18, September 27-28, 2018, St. Louis, MO, USA

accepted some invalid hole fits since the type forall a. a
is not equivalent to a in most cases.
Using a Wrapper: The current approach to avoid side-

effects uses a wrapper that restores flexible meta type vari-
ables back to being flexible after the operation has been run,
reverting any side-effects on those variables.

4 An Additional Application
The reason I started looking into valid hole fits for typed-
holes was to be able to interact with libraries of functions
annotated with non-functional properties.

A Library of Sorting Algorithms annotated with com-
putational complexity and memory complexity is one ex-
ample. We can define a type to represent simple asymptotic
polynomials for a simplistic encoding of big O notation:
{-# LANGUAGE TypeInType, TypeOperators, TypeFamilies,

UndecidableInstances, ConstraintKinds #-}
module ONotation where

import GHC.TypeLits as L
import Data.Type.Bool
import Data.Type.Equality

-- Simplistic asymptotic polynomials
data AsymP = NLogN Nat Nat

-- Synonyms for common terms
type N = NLogN 1 0
type LogN = NLogN 0 1
type One = NLogN 0 0

-- Just to be able to write it nicely
type O (a :: AsymP) = a

type family (^.) (n :: AsymP) (m :: Nat) :: AsymP where
(NLogN a b) ^. n = NLogN (a L.* n) (b L.* n)

type family (*.) (n :: AsymP) (m :: AsymP) :: AsymP where
(NLogN a b) *. (NLogN c d) = NLogN (a+c) (b+d)

type family OCmp (n :: AsymP) (m :: AsymP) :: Ordering where
OCmp (NLogN a b) (NLogN c d) =

If (CmpNat a c == EQ) (CmpNat b d) (CmpNat a c)

type family OGEq (n :: AsymP) (m :: AsymP) :: Bool where
OGEq n m = Not (OCmp n m == 'LT)

type (>=.) n m = OGEq n m ~ True

We can now annotate a library of sorting functions to use
O notation to convey complexity information:
{-# LANGUAGE TypeInType, TypeOperators, TypeFamilies,

TypeApplications #-}
module Sorting (mergeSort, quickSort, insertionSort

, Sorted, runSort, module ONotation) where

import ONotation
import Data.List (insert, sort, partition, foldl')

-- Sorted encodes average computational and auxiliary
-- memory complexity. The complexities presented
-- here are the in-place complexities, and do not match
-- the naive but concise implementations included here.

newtype Sorted (cpu :: AsymP) (mem :: AsymP) a
= Sorted {runSort :: [a]}

insertionSort :: (n >=. O(N^.2), m >=. O(One), Ord a)
=> [a] -> Sorted n m a

insertionSort = Sorted . foldl' (flip insert) []

mergeSort :: (n >=. O(N*.LogN), m >=. O(N), Ord a)
=> [a] -> Sorted n m a

mergeSort = Sorted . sort

quickSort :: (n >=. O(N*.LogN) , m >=. O(LogN), Ord a)
=> [a] -> Sorted n m a

quickSort (x:xs) = Sorted $ (recr lt) ++ (x:(recr gt))
where (lt, gt) = partition (< x) xs

recr = runSort . quickSort @(O(N*.LogN)) @(O(LogN))
quickSort [] = Sorted []

Using valid hole fits, we can then search the sorting library
by specifying the desired complexity in the type of a hole to
find functions with those properties (or better):

Valid hole fits include
mergeSort :: forall (n :: AsymP) (m :: AsymP) a.

(n >=. O (N *. LogN), m >=. O N, Ord a)
=> [a] -> Sorted n m a

quickSort :: forall (n :: AsymP) (m :: AsymP) a.
(n >=. O (N *. LogN), m >=. O LogN, Ord a)
=> [a] -> Sorted n m a

Figure 4. Valid hole fits found in GHCi version 8.6 for the
hole in _ [3,1,2] :: Sorted (O(N*.LogN)) (O(N)) Integer

5 Related Work & Ideas
Hoogle is the type directed search engine for Haskell, and
allows users to easily search all of Hackage for functions
by type or name [12]. Hoogle, however, does not integrate
with the type checker of GHC, and can have difficulties with
handling complex types and type families. Hoogle uses data
extracted from the Haddock generated documentation of
packages [12], meaning that unexported functions in the
current, local module and local bindings like function argu-
ments and bindings defined in let or where clauses are not
discoverable. For searching the Haskell ecosystem however,
Hoogle remains unparalleled.

Program Synthesis: Finding valid hole fits can be con-
sidered a special case of type-directed program synthesis.
Djinn is a program synthesis tool that generates Haskell
code from a type, and can generate total functions rather
than just single identifiers fom user provided types and func-
tions [2]. Synquid is a command line tool and algorithm that
can synthesize programs from polymorphic refinement types
in an ML-like language [14]. Other program synthesis tools
include InSynth and Prospector [6, 11], however none of
these are integrated with a compiler or type checker of a
language, but are rather stand-alone tools or IDE plugins.

PureScript: The valid hole fits as presented in this report
are modeled on the type directed search that Hegemann
implemented in PureScript as part of his Bachelor’s thesis

Haskell ’18, September 27-28, 2018, St. Louis, MO, USA Matthías Páll Gissurarson

work [8]. In PureScript, the type directed search looks for
matches when a typed-hole is encountered [8]. The valid
hole fits as I have implemented them in GHC go further
than those in PureScript in that the output is sorted, and
additional arguments are available via refinement hole fits.

Agda: The typed-holes of GHC were originally inspired
by Agda [7]. Agda is dependently typed, and thus can offer
very specific matches. The emacs mode of Agda offers the
Auto command to automatically fill a hole with a term of
the correct type, and the Refine command can split a hole
into cases containing additional holes [1]. The dependent
typing has the drawback that type inference is in general
undecidable, and users must explicitly provide more types
than required in Haskell [13].

Idris, like Agda, is dependently typed, and offers a proof-
search command that can construct terms of a given type [3].
Idris also has a type directed search command, but in Idris
the command also gives (and denotes) matches with a more
specific type, in addition to matches of the same or more
general type [3]. This allows users to find functions that
match Eq a => [a] -> a when searching for [a] -> a,
even though it requires an additional constraint [3]. Idris
does not integrate these commands with typed-holes.

6 Conclusion
As can be seen from the examples in this report, valid hole
fits can be useful in many different scenarios. They can im-
prove the user experience for Haskell programmers working
with prelude functions like foldl or advanced features like
lens or TypeInType. The implementation makes use of the
already present type-checking mechanisms of GHC, and in-
tegrates well with typed-holes in a non-intrusive manner. I
believe it to be good addition to the typed-holes of GHC; it
should help facilitate Type-Driven Development in Haskell.
I learned a great deal from this project. Extending GHC

was certainly non-trivial, however, the modularity of GHC
allowed me to reuse a lot of code and to focus on the what
rather than the how. A few pitfalls were encountered (like
type checking by side-effect), and while the documentation
of GHC internals is not so great (being mostly spread around
in comments and assuming a lot of knowledge from the
reader), the community was very helpful to a newcomer.

6.1 Future Work
When working with typed-holes, a few issues come to light:
TooGeneral Fits: The types inferred byGHC are sometimes
too polymorphic for the valid hole fits to be useful. One such
example is if we consider the function f x = (_+x)/5. Here,
GHC will happily infer the most general type, namely that
f :: Fractional a => a -> a. A sensible hole fit for the
hole in f is pi :: Floating a => a, but that would con-
strain f to the more specific type of Floating a => a -> a.
If f is not explicitly typed, then pi should be a valid hole

fit. However, f having a more specific type might invalidate
other code that uses f, if those uses are explicitly typed with
a Fractional constraint and not a Floating constraint. We
would like to suggest such hole fits, for example by including
a list of more specific hole fits, such as offered by Idris [3].

Built-in Syntax: Functions that are built-in syntax are
not considered as candidate hole fits, since they are not
in the global reader. However, functions like (,), [_], and
(:) :: a -> [a] -> [a] are very common, and suggest-
ing them would improve the user experience. Since these
functions are syntax, they are not “in scope” in the global
reader and no list of these functions is defined in GHC, mak-
ing the addition of built-in syntax candidates non-trivial.
One solution would be to hard-code these as candidates.

Functions with Fewer Arguments: There is no way to
find functions that take in fewer arguments than required,
and users must resort to binding the arguments (with e.g.
(\x -> _)) in order to find these suggestions. Considering
lambda abstractions as candidates could improve this case.

Specifying Behavior: It can be hard to choose which fit
to use when multiple fits with the right type but different
behaviors are suggested. Being able to hint to GHC how the
function should behave would allow us to discard wrong hole
fits. One approach would be integrating the valid hole fits
with something like the refinement types of Liquid Haskell:

{-@ isPositive :: x:Int -> {v:Bool | v <=> x > 0} @-}

in which users can specify invariants for behavior [15].

6.2 Current Status
My contributions to GHC have been accepted. A basic ver-
sion of the valid hole fits is in GHC version 8.4, an improved
version with sorting, refinement hole fits and local binding
suggestions in GHC version 8.6, and on GHC HEAD, a ver-
sion is available with a flag to display documentation for
hole fits in the output (to explain opaque function names).
All code is available in the TcHoleErrors module in GHC.

Acknowledgments
I would like to thank the members of the Haskell commu-
nity who helped me while writing my extensions to GHC.
In particular I would like to thank Simon Peyton Jones for
sharing his intimate knowledge of the intricacies of GHC
with me, Oleg Grenrus for suggesting sorting by subsump-
tion, Ben Gamari and Matthew Pickering for reviewing my
contributions and for their feedback and suggestions, Mary
Sheeran for her supervision, and Koen Claessen and Sólrún
Halla Einarsdóttir for their feedback on this report.

A SEED project from the Chalmers Area of Advance ICT
provided the initial impetus for this work. This work was
partially funded by the Swedish Foundation for Strategic
Research (SSF) under the project Octopi (Ref. RIT17-0023).

Suggesting Valid Hole Fits for Typed-Holes Haskell ’18, September 27-28, 2018, St. Louis, MO, USA

References
[1] Agda Contributors. 2017. Agda Documentation 2.5.3. https:

//agda.readthedocs.io/en/v2.5.3/
[2] Lennart Augustsson. 2014. The Djinn package. https://hackage.

haskell.org/package/djinn
[3] Edwin Brady. 2017. Type-Driven Development with Idris. Manning

Publications Company.
[4] GHC Contributors. 2017. GHC 8.2.1 users guide. https://downloads.

haskell.org/~ghc/8.2.1/docs/html/users_guide/index.html
[5] GitHub. 2017. The Open Source Survey. http://opensourcesurvey.org/

2017/
[6] Tihomir Gvero, Viktor Kuncak, Ivan Kuraj, and Ruzica Piskac. 2013.

Complete completion using types and weights. In PLDI ’13, Proc. the
34th ACM SIGPLAN Conference on Programming Language Design and
Implementation. ACM, 27–38.

[7] Haskell Wiki Contributors. 2014. Typed holes in GHC. https:
//wiki.haskell.org/index.php?title=GHC/Typed_holes&oldid=58717

[8] Christoph Hegemann. 2016. Implementing type directed search for
PureScript. (2016). BSc. Thesis, University of Applied Sciences,
Cologne.

[9] Graham Hutton. 2016. Programming in Haskell. Cambridge University
Press.

[10] Edward Kmett. 2018. The lens library. https://hackage.haskell.org/
package/lens

[11] David Mandelin, Lin Xu, Rastislav Bodík, and Doug Kimelman. 2005.
Jungloid mining: helping to navigate the API jungle. In PLDI ’05, Proc.
the 26th ACM SIGPLAN Conference on Programming Language Design
and Implementation. ACM, 48–61.

[12] Neil Mitchell. 2008. Hoogle overview. The Monad. Reader 12 (2008),
27–35.

[13] Ulf Norell. 2008. Dependently typed programming in Agda. In Interna-
tional School on Advanced Functional Programming. Springer, 230–266.

[14] Nadia Polikarpova, Ivan Kuraj, and Armando Solar-Lezama. 2016. Pro-
gram synthesis from polymorphic refinement types. In PLDI ’16, Proc.
the 37th ACM SIGPLAN Conference on Programming Language Design
and Implementation. ACM, 522–538.

[15] Niki Vazou, Eric L Seidel, Ranjit Jhala, Dimitrios Vytiniotis, and Si-
mon Peyton-Jones. 2014. Refinement types for Haskell. In ICFP ’14,
Proc. the 19th ACM SIGPLAN International Conference on Functional
Programming. ACM, 269–282.

https://agda.readthedocs.io/en/v2.5.3/
https://agda.readthedocs.io/en/v2.5.3/
https://hackage.haskell.org/package/djinn
https://hackage.haskell.org/package/djinn
https://downloads.haskell.org/~ghc/8.2.1/docs/html/users_guide/index.html
https://downloads.haskell.org/~ghc/8.2.1/docs/html/users_guide/index.html
http://opensourcesurvey.org/2017/
http://opensourcesurvey.org/2017/
https://wiki.haskell.org/index.php?title=GHC/Typed_holes&oldid=58717
https://wiki.haskell.org/index.php?title=GHC/Typed_holes&oldid=58717
https://hackage.haskell.org/package/lens
https://hackage.haskell.org/package/lens

	Abstract
	1 Introduction
	1.1 Contributions
	1.2 Background

	2 Case Studies
	2.1 Exercise from Programming in Haskell
	2.2 The Lens Library

	3 Implementation
	3.1 Inputs & Outputs
	3.2 Relevant Constraints
	3.3 Candidates
	3.4 Checking for Fit
	3.5 Refinement hole fits
	3.6 Sorting the Output
	3.7 Dealing with Side-effects

	4 An Additional Application
	5 Related Work & Ideas
	6 Conclusion
	6.1 Future Work
	6.2 Current Status

	Acknowledgments
	References

