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Abstract—Spectrum-based fault localization and its formulas
often struggle with large spectra containing many expressions
irrelevant to the fault, which impacts its overall effectiveness.
Spectra can inflate for large programs or on finer granularity,
such as expression-level coverage from other languages like
Haskell. To address this, we introduce 25 rules to filter the spectra
based on type information, AST attributes, and test results.
These aim to reduce the suspiciousness of innocent locations
(bug-free expressions) and improve the performance of SBFL
formulas w.r.t. TOP50 and TOP100 metrics. Our experiment,
conducted on 11 Haskell programs, shows that individual filters
significantly reduce spectra size, although some data points
(faulty expressions) become unsolvable. By applying established
SBFL formulas like Ochiai and Tarantula to these reduced
spectra, we observe average improvements of up to 40% w.r.t.
TOP50 for individual soft rules, such as proximity to failure.
Combining the best-performing filters yields improvements of
45.5% for Ochiai, 67.4% for DStar2, and 45.5% for Tarantula.
The most effective filtering rules over all formulas captured
proximity to failing expressions, usage of a non-unique type, and
whether a failing test covered the expression. Our results suggest
that simple, straightforward filters can produce substantial per-
formance gains. We further identify 4 uncovered bugs originating
from code generation (common in functional programming) and
system tests, which can not be addressed purely by spectrum-
based fault localization.

Index Terms—Fault Localization, Functional Programming,
Haskell

I. INTRODUCTION

Spectrum-based fault-localization (SBFL) [1] is a widely-
used technique to assist developers in locating bugs. It gen-
erates a spectrum of the program under test by tracking
coverage for both failing and passing tests. Except for some
machine-learning applications [2], these spectra are processed
by a ranking formula, which estimates the likelihood of each
location being faulty (called suspiciousness). There has been a
rich body of research to improve this general framework: Test-
Generation [3], [4] to get a richer spectrum, more specialized
formulas [5], [6], or additional program information (e.g. the
usage of entity relations [7] or proximity [8]).

Despite this progress, SBFL continues to face challenges
[9], [10], usually related to the programs’ size and its complex-
ity. Some of the other techniques, such as test generation [3],

1Both authors contributed equally to this research.
2This work was initiated while the author was affiliated with TU Delft.

have a hard time adjusting for this — the more complex a
program gets, the harder test generation becomes [11].

With this work, we aim to improve SBFL without introduc-
ing additional techniques like test generation. We enrich the
spectra at generation by adding information on the locations’
type, as well as their AST position, allowing us to filter
the spectra before applying ranking formulas. The basic idea
is simple: If we are able to filter out innocent (non-buggy)
expressions, then the final ranking can be significantly im-
proved. Yet determining which program attributes are strongly
related to faults is not straightforward. For instance, a complex
type can both be the origin of issues (i.e., because they are
hard to understand) or limit the possibilities for misuse (i.e.,
they are explicit and understandable). To explore this, our
work designs a set of initial filtering rules and evaluates their
efficiency for both spectrum reduction and the influence on the
suspiciousness scores. To avoid bias and thoroughly investigate
the effectiveness, we also invert individual rules to test the
antithesis of our assumptions.

The implementation (and examples) from this work are
provided in Haskell. Functional programming languages like
Haskell have not been widely investigated in fault localization
research. However, they present unique challenges for SBFL.
For instance, Haskell’s lazy evaluation paradigm can compli-
cate mapping between tests and the expressions under test
since the latter are evaluated only when necessary. Higher-
order functions and sophisticated type systems introduce in-
direction, making locating faulty expressions harder. Despite
these additional challenges, Haskell offers rich information
through the Glasgow Haskell Compiler (GHC), which allows
the extraction of the expression properties required for our
filtering rules. Our research shows how SBFL may be modified
for functional programming but the rules presented are trans-
ferable to imperative languages and can be re-implemented
or extended for Java. At the same time, we shed some light
on the applicability of initial SBFL approaches for functional
programming, a field that is currently understudied.

A. Contributions

We enrich the normal approach to SBFL as seen in Figure 1.
Our contributions can be summarized as follows:

1) Expanding spectra by introducing type information for
each expression.
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Fig. 1: Overview: Spectrum-Reduction Pipeline

2) A configurable set of predicates that filter spectra for
type-, execution- and AST-attributes.

3) Evaluating SBFL with and without spectra-filters for 11
real-world Haskell programs.

4) Implementation of a expression-level spectrum generation
add-on to Haskells’ tasty framework.

We find that while initially SBFL is promising for functional
programs, it is significantly improved by applying (single) fil-
ters by up to 42% w.r.t. TOP50 scores. Combining predicates
(filtering rules) can improve this further, yet the results are
data point dependent and overfitting occurs.

B. Research Questions

To evaluate the spectra-reduction, we first establish the
baseline performance of SBFL for the programs under test
by applying common formulas from literature1.

Based on the original (known) fault locations we are first
interested in the impact of filters, in particular if they improve
the ratio of |faults|

|expressions| :

RQ1: Effectiveness of Filters
Are AST- and Type-based rules an effective approach to
reducing spectra while preserving faults?

While the filters might produce a preferable ratio of ele-
ments, this does not guarantee an overall improved perfor-
mance; some formulas exploit specific attributes, which might
be removed by filters loosing the most promising suggestions.
As such, RQ2 investigates the changes of formula-rankings
when combined with a single filter:

RQ2: Impact of Filters for SBFL-Formulas
How is the individual performance of formulas impacted by
AST- and Type-based spectrum filters?

Lastly, as we hope to see partial improvements in RQ1
and RQ2, we aim to combine rules in a way that noticeably
improves the performance of formulas. By searching for a
combination, we aim to also combine the partial results into
an actionable outcome formulated in RQ3:

RQ3: Searching for (optimal) Rule Combinations
Can we identify a combination of rules that leads to a
significant performance improvement for existing formulas?

1Based on Naish et al. [12] we implement a total of 8 formu-
las, covering all equivalence classes identified by their work. From
Optimal,OptimalP,Tarantula, Ochiai, Dstar2, Dstar3, Rogot1,
Jaccard and Hamming, we focus on the bold ones for their success on the
data points and prominence within existing work.

1 module Ex where
2
3 divs :: Int -> [Int]
4 divs n = go 2
5 where
6 go i | i == n = []
7 go i = if d i
8 then i : go (i + 1)
9 else go (i + 1)

10 d i = n `mod` i == 0
11
12 smallestDiv n = head (divs n)

prop_10 =
divs 10 `has` [2, 5]

prop_15 =
divs 15 `has` [3, 5]

prop_128 =
divs 128 `has` [2, 4, 8, 16, 32, 64]

prop_8 =
smallestDiv 8 == 2

prop_13 =
smallestDiv 13 == 13

prop_evens n = n > 2 && even n ==>
smallestDiv n == 2

prop_odds n = n > 2 && odd n ==>
n `mod` (smallestDiv n) == 0

Fig. 2: A buggy program with a test suite. has checks that
the list contains all the elements listed.

In summary, this research explores directions to design
filters that improve performance of existing SBFL formulas.

C. Motivating Example

Consider the function and properties in Figure 2. The
divs function returns the list of divisors of the given
number, smallestDiv should return the smallest divisor.
The properties in this figure specify both unit tests using
concrete examples and two metamorphic tests, which check
that transformations to the input lead to expected output.

The implementation in Figure 2 contains a bug: When
called with a prime number it returns the empty list,
where the smallestDiv expects a non-empty list. For
prime numbers such as in prop_13 and generated exam-
ples for prop_odds, the program crashes with an error:
Prelude.head: empty list. This is due to an off-by-
one error — divs does not include the number itself.

Running the test suite for the program in Figure 2 produces
the spectrum in Table I. Standard spectra consist of the tests,
their status, and the locations covered by each test. For this
paper, we augment the spectra: We include the types of
expressions, the framework of the test (properties, unit tests,
golden tests), identifier names (whether the location possesses
an identifier), as well as the number of calls for this location in
each test. Our coverage is not binary, i.e. whether they were
called by a test, but are fine-grained and track how often a



TABLE I: (Partial) spectrum for the code in Figure 2
name type result i n i == n [] d i i: go (i + 1) go (i + 1) d i = ... smallestDiv divs n ...

type - - Int Int Bool [Int] Bool [Int] [Int]
ident - - i n
10 Unit True 4 4 0 0 2 2 2 4 0 1
15 Unit True 4 4 0 0 5 2 2 4 0 1

128 Unit True 63 63 0 0 57 6 57 63 0 1
8 Unit True 1 1 0 0 0 1 0 1 1 1
13 Unit False 12 12 1 1 11 0 11 11 1 1

evens QC True 100 100 0 0 0 100 0 100 100 100
odds QC False 2 2 1 0 1 0 1 1 1 1

Tarantula:

nif

nif + nuf

nif

nif + nuf

+
nip

nip + nup

Ochiai:
nif√

(nif + nuf
)(nif + nip)

Fig. 3: Tarantula & Ochiai, drawn from [12]. nif and nip are
the number of times the expression e is involved in a failing
or passing test respectively, while nuf

and nup is how many
times the expression was uninvolved.

Location Which is Ochiai Tarantula

6:12-17 i == n 1.0 0.625
6:21-22 [] 0.707 1.0
12:1-29 smallestDiv 0.707 0.714
7:15-17 d i 0.632 0.625
9:18-27 go (i + 1) 0.632 0.625
10:5-24 d i = ... 0.534 0.5

Fig. 4: TOP5 suspiciousness scores from classic SBFL formu-
las, with the bug location in bold

location was called. The notation 6:12-17 in Table I and
Figure 4 stands for line 6 columns 12 to 17.

Using the formulas detailed in Figure 3 on the spectrum,
we can score the locations as shown in Figure 4.

The results highlight three possibilities of fixing the bug:
1 Fix the off–by–one error in line 6 by correcting the

comparison, 2 provide a default empty list, or 3 replace
the definition of smallestDiv to handle cases when divs
returns an empty list. This short example program spans only
35 locations, of which 5 are relevant to find the bug. Real
programs have a lot more locations. Two of the considered
programs Pandoc and Duckling, have 91k and 277k locations
respectively, accounting only for those involved in the test
suite (see Table III). In comparison, their faults are the needle
in the haystack, ranging from 6 to (at most) 72 expressions,
touched by only a handful failing tests. This forms a known
limitation for traditional SBFL formulas [10], which unfortu-
nately affects application to real-world bugs. By filtering the
spectrum, we can focus our attention on only the locations
we are interested in. In Section III-B we introduce a rule-base
system that allows users to filter a spectrum before analysis
(i.e. the ranking by formula application), users can encode

their intuitions on the “usual suspects”, and increase both
localization and runtime performance of SBFL techniques. The
rules in this work express our intuitions, and even simple filters
can proof useful: By applying the rule rIsIdentifier ==
0.0, we reduce the spectrum to 26 locations that do not
specify an identifier. This still results in the bug locations
above, with the same Ochiai scores. If we want to focus only
on AST-leaves, we apply the rule rASTLeaf == 0, and
reduce the spectrum to only 14 locations, while still keeping
the 6:21-22 location. A further reduction is possible by
combining rules: As an example, (not (rIsIdentifier
== 0)) && (rASTLeaf == 0) reduces the spectrum to
only 5 locations, keeping the fault at 6:21-22. But which
attributes should we focus on? In the rest of this work, we
take large open-source Haskell programs to provide detailed
analysis and shed light on which attributes are important.

II. BACKGROUND AND RELATED WORK

a) Spectrum-based Fault Localization: Spectrum-based
fault localization (SBFL) was developed as a technique to
cover well-testable issues related to the year 2000 problem
[1], and is considered one of the most prominent due to its
efficiency and effectiveness [10]. After defining a failing test
that triggers the Y2K problem of an application, the program
tests were executed in order, and their coverage was recorded.
Under the assumption that there are (passing) tests covering
expected behavior, the issue must originate in statements
covered by failing tests without being in passing tests. This
approach formed the core of modern SBFL: from the initial
concept of intersection, techniques emerged that use formulas
[13], [14], [5], [6] to assign suspiciousness scores to different
parts of the program.

Many refinements have been proposed: promising work
revolves around the introduction of new AST elements and
program states [8], the application of mutation [15], [16], [17],
[18], meta- or machine learning approaches [19], [20], [21],
or the filtering of tests and statements [22], [23], [24].

An important piece of work we draw from is Naish et
al. [12], which discusses mathematical attributes of spectrum-
based formulas. In addition to introducing two new formulas,
they prove that some formulas must result in the same ranking
(equivalence classes). Within this work, we implement at least
one formula from each identified equivalence class.

b) Li et al.: Comparable work on spectrum-based fault
localization for Haskell originates from Li et al. [18]. They
collect open-source bugs and apply existing SBFL formulas



to expression-level spectra. To improve generalization and
introduce an ML approach, the programs were mutated to
extend their data set. Although they publish the dataset which
we incorporate, the original code is unavailable. Li et al.
have similar goals in introducing SBFL for Haskell, but the
details differ: On a more fundamental level, our spectra extend
previous work with unique attributes of types, tests, and iden-
tifiers. We introduce rules that extend the existing literature
to capture more concepts than SBFL formulas currently can.
Their approach includes data augmentation, which is an venue
to synthesize the efforts of both works in future research.

c) SBFL Tie breaking: Research that is close to our
work is the field of Tie-Breaking SBFL Formulas [25], [10].
Similarly to our motivation, SBFL in Java also faces rankings
with identical execution patterns or suspiciousnesses.

Tie-breaking mechanisms often emphasize approaches simi-
lar to our rules: Sarhan et al. [26] utilize method-call frequency
to break ties, treating more frequently called locations more
suspicious, Beszedes et al. [27] exploit chains in function calls
to identify prominent candidates and Wen et al. [28] utilize the
commit history to rank recently changed locations higher.

Our work differs in abstraction from individual rules by pro-
viding multiple configurable options and their combinations.
The provided richer spectra can also be picked up by other
frameworks, e.g. as input for machine learning models.

d) Other Fault Localization efforts for functional pro-
gramming: Fault localization in a functional setting has
been explored in Liquid Haskell [29], using refinement
types, a type system augmented with logical predicates.
Tondwalkar et al. collect constraints and localize faults by
mapping a minimal set of atomic unsatisfiable type constraints
to likely bug locations. The work relies on a more powerful
type system than Haskell has, namely liquid types, which
localizes (and repairs) errors on the type level. The Liquid
Haskell approach requires precise modeling of the expected
system-behavior at the type level, which often means giving up
type-inference In this work, we target programs with existing
test suites, and enable developers to get more out of previous
testing efforts. Using liquid types, a form of test generation
can form supplementary work similar to test generation efforts
in program repair.

III. IMPLEMENTATION & EXPERIMENT SETUP

A. Spectrum Generation

We introduce a TASTY-SPECTRUM package2 which adds an
ingredient to the Tasty test framework that captures coverage
when tests are run and generates a spectrum. Tasty-Ingredients
are a modular way to implement plugins for Tasty adding
additional behavior around tests such as re-running, timeouts,
or, in this case, data extraction.

To generate spectra, we use the instrumentation provided
by Haskell Program Coverage (HPC) and programs compiled
with the -fhpc flag. This generates .mix files that allow

2https://github.com/Tritlo/TastySpectrum

HPC to connect the indices it produces to the source lo-
cations in the modules. Our implementation also includes a
GHC source plugin, which integrates with the compiler and
extracts type and identifier information from modules during
compilation and generates .types files.

GHC Source Plugins: GHC allows users to define source
plugins, which are run at the end of various stages of compi-
lation, including parsing, type-checking, and renaming. These
plugins allow users to modify and interact with the source code
after each stage. In the TASTY-SPECTRUM package, we define
a plugin that operates at the end of the type-checking stage,
which traverses the type-checked expressions, and notes their
types in a .types file. The .types files are saved alongside
the .mix files and later combined with the .mix information
during spectrum generation.

Haskell Program Coverage (HPC): HPC instrumentation
is integrated into GHC, and is based on maintaining an
array that counts executions for each source location (which
corresponds to expressions) in the module during runtime.
Whenever an expression is evaluated, this triggers a “bump”
in the array, allowing HPC to track the number of times each
expression was evaluated in the module. This array allows
access, manipulation and re-initialization at runtime.

Spectra are generated by running the test suite. As the code
has been compiled with the -fhpc flag, the RTS will keep
the TIX array in memory. Before running each test, we reset
the HPC state. After each test, we read the current state of
HPC, and track which expressions were evaluated.

After running all tests, the TIX array for each test is
combined with the module structure from the MIX files and the
type/identifier information from the .types files to produce
a type-augmented spectrum as a .csv file. To reduce the size
of the spectrum and focus only on relevant data, we exclude
locations that were not involved in any tests, i.e., those that
have zero evaluations across the entire test suite.

B. Rules

We present the summary of rules in Table II. As outlined in
the introduction, none of these rules are proven to be good;
instead, they form a starting point for filtering and might
prove less applicable or only useful for individual data points.
The thresholds presented form the result of an exploration via
trial-error tuning. The thresholds have been adjusted if a rule
either did not filter any entries or filtered out all locations
or faults across all programs under analysis. A special focus
was on the rules’ complementary aspect — we aim to exploit
multiple dimensions of a single program. As such, we did not
want to cover all possible AST positions in a broad range but
rather hoped to find meaningful intersections of test, type, and
execution patterns that benefit the overall approach.

We admit the rules constitute only a starting point, and a
detailed analysis (e.g., interpreting thresholds as an optimiza-
tion task) is desirable. We consider this to be promising future
work, but expect it to be most fruitful on a per-project basis:
As seen in the following section III-C, the projects utilize dif-
ferent features in varying capacities, making a generalization

https://github.com/Tritlo/TastySpectrum


TABLE II: Code & Rule Overview
Code Filter Explanation Rationale

LEAF rASTLeaf == 0 Filters for locations that are AST-leaves
AST-leaves contain a lot of potentially interesting
elements, such as primitive values or inputs for

logical conditions
NLEAF rASTLeaf > 0 Filters for non-AST-leaves

ID rIsIdentifier == 1 Filters for expressions that are an identifier Catches cases of using the wrong identifier with the
correct type.

HO rTypeOrder >= 1 Covers types of functions, i.e. the expression
is not a variable

Higher-order functions are a known source for
complexity, e.g. fold, map or traverse

UN rTypeArity <= 1
Arity expresses the number of arguments to
a function. This rules covers non-functions

and functions with 1 argument.

HA rTypeArity >= 3 Filters for functions that have 3 or more
arguments.

Complex functions with many arguments might
appear more often in faults. Famous Haskell

troublemakers, like foldr, take 3 arguments.

ST rTypeLength <= 5 Filters for types whose string-representation
is shorter than 5 characters.

We consider type-length as a proxy for type
complexity. Types can be complex for a variety of
reasons (Order, Arity, etc.) but all commonly result

in longer type signatures.

LT rTypeLength >= 10 Only locations whose type when converted
to text is longer than 10 characters

VLT rTypeLength >= 25 Only locations whose type when converted
to text is longer than 25 characters

VNF rDistToFailure <= 2
rDistToFailure covers the length of the

shortest path in the AST to a node touched
by a failing test.

Capture proximity to test-failures. Not dependent
on test-type.

NF rDistToFailure <= 4 Closer than 4 AST edges towards a node
touched by a test-failure. Softer version of VNF.

IDFQ rNumIDFails >= 3 Expressions whose identifiers have been
executed in 3 or more failing tests.

Poor variable assignment can chain to a more
common re-usage of poor variables.

UID rNumIDFails == 1 Expressions whose identifier only appears
once in a test-failure.

Reverse of IDFQ - we might consider often-used
identifiers more innocent, and instead aim for

unique ones.

UT rNumTypeFails == 1 Expressions whose type-signature is unique
within test-failures

Commonly used types might be less error prone -
and unique ones more suspicious.

SID rNumTypeFails >= 2 Expressions whose type-signature was at
least twice within test-failures Negation of UT

CID rNumTypeFails >= 5 Expressions whose type-signature appears in
5 or more failing tests

Due to diversity in types, this should lead to only
primitive, more common data-types.

HFF rTFailFreq >= 10 Expressions who have been executed more
than 10 times over test failures.

Captures execution patterns beyond the sum of
binary coverage.

HPF rTPassFreq >= 25 Expressions who have been executed more
than 25 times in passing tests.

DFP rTFailFreqDiffParent >= 2
Filter for AST-nodes whose

execution-frequency is different than its
parents in failing tests.

Will be triggered by conditionals that lead to one
failing and one or more passing branches.

CSTF rNumSubTypeFails >2
Only expressions that handle a non-unique
subtype, e.g. functions that take strings as

arguments.

USTF rNumSubTypeFails <= 1 Uniquely failing sub-types and expressions
that don’t take arguments

TF rTFail >= 1 Filter for expressions that are touched by at
least one failing test.

UNF, PRF, GF
rUnitFail
rPropFail
rGoldenFail >= 1

Locations that have been touched by at least
one failing test of a specific test-framework

challenging. We hope that the results presented in this work
provide an educated perspective on transferring spectra filters
to other languages and frameworks.

C. Data Collection

We draw data from two Haskell fault datasets, HasBugs
[30] and HaFla [18]. Both datasets provide a similar gran-
ularity of faults originating from projects with known bugs
(based on issues and pull requests) whose fault-fixing commits
include a test. The tests were extracted to produce a faulty but

tested version with a failing test suite. We determine faulty
expressions as all expressions that are completely within faulty
lines, extracted from the git-difference.

A subset of the data was chosen to produce the spectra that
met the required versions of Cabal, tasty (>v1.0), and GHC
(>= 8.6). Other limitations excluded projects like PureScript
(many of the tests run against compiled JavaScript) or Cabal
(all bug-asserting tests are package-level tests outside the tasty



test suite). This results in a total of 11 programs3 from 3
projects - Pandoc, Duckling and an HLS-plugin. An overview
of the data points used is presented in table III.

Comparison with Defects4J - Comparing spectra between
paradigms is challenging, but to approximate, we consult data
from Defects4J [31]. We derive data from a public repository
shared by René Just4 that provides statistics from applying
GZoltar [32] to a subset of 395 bugs from Defects4J.

The Defects4J bugs inspected have a mean Source lines
of code(SLOC)[33]5 of 57.7k and a median of 62.5k. The
mean number of tests in Defects4J is 1439 (median of 202),
and with an average of 2 failing tests. Under the assumption
that most of the SLOCs represent line-level statements, the
resulting spectra will have a comparable number of elements.
We approximate the faulty SLOC for Defects4J as an average
of 2.56 based on the lines removed by the patch. We conclude
that the programs and bugs used in this work are comparable
in size to the averages of Defects4J, but admittedly Defects4J
has a significantly higher number of datapoints.

D. Experimental Setup

Based on the fault-fixing commits of a data point, we revert
the source code patch while keeping the changes to the test
code, observing a test failure during cabal test. At this
stage, we also distinguish noisy test failures as mentioned in
Table III, marking tests that fail before and after the changes
as noisy(other works refer to such tests as Fail-2-Fail (F2F)).
Next, the cabal file is altered to include spectrum generation
and coverage, following the description in Section III-A

a) Considered Metrics: The primary metric considered
for ranking the expressions is TOP-X [34]. Within TopX, the
recommended elements are sorted by their suspiciousness, and
the correct classifications (truly faulty expressions) within the
first X are counted. For this work, after seeing the results of
initial rankings, we opted for TOP50. The TOP10 was too
difficult for most data points, and the TOP100 did follow the
TOP50 with few exceptions.

Another common metric is EXAM [35], assuming that the
user follows every recommendation in order until the real
fault(s) are fixed. The index of the first correct fault is used to
calculate the ratio of the inspected (total) program, with the
exam score expressing how many locations can be skipped
when following the recommendations? The EXAM score is
proportional to the mean reciprocal rank, another metric
commonly reported for FL. For this work, we discarded MRR
and EXAM, as we work with different granularity due to our
expression level spectrum: when introduced in 2003, EXAM
was targeting block-level spectra, but the sheer difference
in the quantity of (mostly benign) expressions would draw
a highly beneficial picture of our approach. Therefore, for
ranking evaluations, we focus on the TOP-X metrics [9].

39 from HasBugs, two from HaFla
4https://bitbucket.org/rjust/fault-localization-data/src/master/
5SLOC are lines of code, after removing white space, comments and other

non-functional elements.

b) RQ1: We answer RQ1 by applying each rule to each
spectrum and report the mean reduction in statements as well

as the mean delta in
|faults|

|statements|
. Each rule configuration

is given a simple, short code name. Very Long Type becomes
VLT, etc. The rules, their codes, and corresponding expres-
sions are shown in Table II.

c) RQ2: is explored by applying all formulas to the
reduced spectra and comparing their TOP-X scores with the
respective baseline (i.e., the un-changed spectra of the data
points/projects under analysis).

d) RQ3: To find possible configurations, we draw the
most promising rules from RQ1 and RQ2, respectively, and
form the subsets of combinations. Due to computational con-
siderations and an expected lower payoff with growing rules,
we consider only combinations of 2 and 3 rules. The rules are
chosen based on their success—we selected 9 of the initial
25 rules for pairing because they improved formulas over the
baseline. The triples are made of the seven formulas of suc-
cessful rule-pairs. This results in a total of

(
25
1

)
+
(
9
2

)
+
(
7
3

)
= 96

rule-configurations considered.
We re-apply the procedures from RQ1 (comparison of

reduction) and RQ2 (performance of formulas) and report the
average differences to the individual baselines.

IV. RESULTS

a) Attributes of Spectra: The created spectra range in
size from 25Kb (HLS), 200 MB (duckling) to up to 500
MB (Pandoc). Spectrum generation is not a costly addition
to the runtime of tests, but compilation time of projects is
longer because the -fhpc flag (instrumentation for program
coverage) is required.

When implementing and controlling the rules, we
noticed that a filter for rTestFailure >= 1 lead
to some data points becoming unsolvable, i.e. there
were no faults touched by failing tests. This is the
case for duckling-4cfe88ea, duckling-ea8a4f6d,
duckling-1dac46a8 and pandoc-4.

The authors double-checked the test suite and, for duckling,
the correct (and expected) corpus tests were failing. The tests
do not run against the original source, but instead generated
code. Arguably, the generated code is faulty, but not the origin
of the issue as it was fixed in the commit. These unique cases
are between other data points, e.g. duckling-328e59eb
which has faults covered by failing tests. For pandoc-4
there are faulty locations on a reader that need changes in
the data format. The relevant golden test run with a
compiled binary of pandoc (unlike the other pandoc data
points) which is invoked by tasty, and not collected by project
coverage. Thus, we have a failing test suite, but the touched
expressions originate only from noisy test failures.

The existence of faults that are not directly covered poses
a challenge for this work and a under-represented aspect
of fault localization. Stemming from real projects, the tests
are realistic and express community efforts. Although tests
cover bugs semantically, it does not cover the faulty code and



TABLE III: Overview of the used data points
Data
Point

Issue Faulty
LOC

Faulty
Locations

Total
Locations

Failing
Tests

Noisy Test
Failures

Total
Tests

pandoc-
3be256efb

Wrong application of ’Big Note’ highlighting when con-
verting to LATEX. Reordering necessary.

1 6 88k 6 0 3254

pandoc-4 Failure converting combined code and bold text to LATEX. 3 12 91k 1 1 3056
pandoc-5 Misinterpretation of code blocks when converting to

ROFF MS. Requires escaping.
1 8 61k 2 6 2400

pandoc-6 Wrongly converting code blocks starting with (1) into
enumerations.

5 39 59k 10 13 2365

pandoc-7 Empty multi-cells not picked up when reading LATEX. 27 72 61k 3 7 2415
hls-2 Issue accounting for relative location ”./” instead of ”.” 2 15 269 1 0 6
hls-
afac9b18

HLS-Plugins can reformat code, Stylish Haskell removed
the last line regardless of whether it had content.

1 17 122 2 0 13

duckling
-
ea8a4f6d

Wrong pronomina for German million. Regex adjustment. 1 5 288k 1 0 364

duckling
-
4cfe88ea

Missing combined durations cases (e.g ”2 hours and 20
minutes”)

18 4 260k 1 1 342

duckling
-
28ddc3bf

Wrong parsing of 1.000,00 for Dutch. 1 5 299k 1 0 346

duckling
-
328e59eb

Missing cases for weights (and combinators) in Portuguese
language.

19 26 277k 1 1 360

require new spectrum techniques. To some extent, these tests
are juxtaposed to automatically generated tests, which cover
code behavior without necessarily capturing the semantics of
faults [36], [37], [38]. Due to the common usage of Haskell
for domain-specific languages, parsers, and code generation
tooling, we expect these types of faults to be more common in
functional paradigms than in other languages. This constitutes
an instrumentation shortcoming when tests work against any
kind of artifact outside of the initial code base — Java will
face similar issues in system tests, e.g. within a micro-service
architecture and remote actors.

b) Single Filters and Shrinkage: An overview of shrink-
age is presented in fig. 5, with rules grouped by their do-
main. We observe that rules around Test Execution (i.e. unit
test failures, golden test failures, etc.) give the average best
reduction in filter size - keeping most faults while removing
most unrelated locations. The codes reduce spectra, but do (on
average) not favorably impact the ratio of faults to entries, as
indicated by the linear interpolation.

Over all code-types we see that there are softer rules and
harder rules, respective to how much of the spectrum they
filter. Many of the stronger filters rendered one or more
data-points unsolvable by removing all true faults from the
spectrum. This also the major set-back for the Test Execution
filters: Depending on the test suite, a filter for failing golden
tests (which has a very good ratio of reduction) will make
issues tested by a property unsolvable. As such, the Test
Execution filters perform well, but must be used either with
some form of oracle, or by an educated user.

We’d like to highlight some filters in table IV: First, we see
with TF and UNF two codes that strongly reduce the spectra,

but remove all faults from 4 and 5 data points. The table shows
by how much these actually shrink spectra - the overall ratio
of faults to entries reaches 1%, making even guessing have an
average TOP50 of 2. This would make utilizing such filters a
dream scenario and as such, these filters should be employed.

LEAF is an interesting case, as it tells us by itself a lot
about our program: 63.6% of our nodes are not AST-leaves,
but 75.4% of our faults are. As such, reducing by leaves should
benefit most formulas while keeping all programs solvable.
Next, we see with NF (proximity to failure ¡= 4) proxies TF by
being a generally softer filter, resulting in very little reduction.

CID, UT, LT and VLT mean to be examples of the code
type Type Frequency. They remove about as many entries as
faults, and stricter rules produce unsolvable data points.

TABLE IV: Excerpt: Single Filter Spectra Shrinkage

Code Entry
Reduction

Fault
Reduction

|faults|
|entries|

Points with
0 Faults

TF 99.2% 32.5% 0.01 4
UNF 99.1% 25.6% 0.01 5

LEAF 63.6% 25.6% ¡0.01 0
NF 1.3% 2.3% ¡0.01 0

CID 42.0% 41.5% ¡0.01 2
UT 98.4% 95.3% ¡0.01 6
LT 65.7% 49.0% ¡0.01 1

VLT 93.3% 71.6% ¡0.01 6



Fig. 5: Overview of Shrinkage by Code - Grouping

TABLE V: Average TOP50 improvement for single rule filters

OptimalP Tarantula Ochiai DStar2 DStar3
BASE

4.0
BASE

2.8
BASE

4.7
BASE

4.2
BASE

4.3

NF
4.1

(+2.5%)

CID
2.9

(+3.5%)

SID
5.0

(+5.8%)

SID
5.1

(+21.4%)
-

SID
4.1

(+2.5%)

ST
3.4

(+21.4%)

UNF
5.6

(+17.5%)

NF
5.5

(+30.9%)

CID
4.8

(+11.6%)
UNF
5.7

(+42.5%)

NF
4.1

(+46.4%)

NF
6.4

(+34.6%)

UNF
6.0

(+42.8%)

UNF
5.7

(+32.5%)

RQ1: Shrinkage of Filters
The most preferable reductions are done by filters for Test
Types, e.g. unit or golden tests. These require an educated
user to not render data-points unsolvable. Only soft filters
like AST-leaves or proximity to failure preserve faults in all
data points, at the cost of lower reduction.

c) Filters and Formulas: Table V shows the codes that
lead to the highest improvement for the most promising formu-
las. Single codes also improved other formulas like Rogot and
Jaccard, but for brevity we focus on those that had the highest
initial (and final) TOP50 score: OptimalP, Tarantula, Ochiai,
DStar2 and Dstar3. The greatest improvement of 42.8% was
achieved for DStar2 when filtering for expressions executed
by at least one failing unit test. The best overall performance
for single rules was achieved by Ochiai and a filter for NF,
i.e. nodes that were at most 4 AST-edges away from a node
touched by a test-failure. With this configuration, a final
TOP50 of 6.4 was achieved (+46.1%).

In total, there were 9 codes that lead to improvement: ’SID’,
’VLT’, ’ST’, ’UN’, ’TF’, ’NF’, ’CID’, ’CSTF’, and ’UNF’.
These fall into two categories: type- and test-based. We see
rules on sharing types (SID, CID, CSFT), type complexity
(VLT,ST,UN) and test execution correlation (NF, TF, UNF).
These 9 codes were chosen for further combination.

Fig. 6: Best performing codes for Ochiai

One notable fact is that the filters that lead to the highest
improvements in TOP50 did not necessarily align with the
highest shrinkage. A prominent code is NF which reduces
spectra only by a few percent. We expect this to be a sweet spot
between improving some, while not interfering with other, data
points of the set. Filters for test-type improve the applicable
programs significantly, but they also render some unsolvable.
On average, for the single rule filters, this hard approach seems
not beneficial. Soft filters like NF, SID and CID reduce the
spectra evenly while keeping nearly all data points solvable.



Fig. 7: Best performing codes for DStar2

RQ2: Effects of Filters for TOP50 Scores
Some filters improve formula-TOP50-performance drasti-
cally: Filtering for proximity to failure improves Tarantula
by 46%, Ochiai by 42% and DStar2 by 31%. The other
prominent code filters for unit test failure, improving DStar
by 43% and Ochiai by 17.5%. The effectiveness of filters
does not align with the general reduction of the spectra and
the ratio of faults to entries it leaves.

d) Combining Filters: When applying pairs of filters, we
see another increment in performance. An successful example
is seen in fig. 8: The strongest improvement is achieved by a
combination of (unit) test failure (UNF / TF) and the type of
a location being used non-uniquely (SID). Compared to just
applying UNF, this combination brings another 19% improve-
ment on overall TOP50, resulting in the best configurations
being 45.4% better than baseline performance (which is 10.8%
better than the best single-code filter for Ochiai, NF in fig. 6).
As discussed for shrinkage, these top performers are assume
that the test-framework is known and might not be usable for
other programs. Still, we also see soft rules (CID-UN, NF-UN)
that give improvements while being test-framework-agnostic.

We see further improvement on a three code filters, such as
NF-TF-UNF reaches a TOP50 of 8.5 for Tarantula (+200%
to baseline) and DStar3 (+99% to baseline), and bring less
common formulas up to the same performance (Jaccard, a
primitive formula, also reaches TOP50 of 8.5). This can be
considered over-fitting: Within the data points, they have un-
even numbers of faults. These filters that specialize on the test-
types remove all noise for the fault-rich data points (pandoc-6,
pandoc-7) and results in overall high average TOP50, despite

Fig. 8: Best performing multi-codes for Ochiai

not performing better for most data points. The occurrence of
UNF (unit test failure) which should be a subset of TF (test
failure) in combination indicates a form of over-fitting.

RQ3: Combining Filters
Pairs of filters can further improve performance, e.g. by
10.8% for Ochiai (to 45.4% above baseline). The highest
performance increases are achieved by filters that contain
test-type restrictions. We see less strong, but overall improv-
ing combinations of soft filters filtering by type complexity.
Once combining three codes, the filters over-fit on a few
fault rich data points.

V. DISCUSSION

a) Should we use test-based Filters: A set of filters that
can lead to great results are focused on test type: (Unit) Test
failures can both heavily shrink the spectra and assist the
formulas by reducing noise. These average results draw from
its population: For some (fault-rich) data points, UNF is a
silver bullet, yet for others, it removes all valid locations.

These test-type rules are also conceptually different from the
other rules; every program will have AST leaves and more or
less complex types, but not every program utilizes properties.
As such, for researchers or uncertain errors, we recommend
proxying these hard rules with the soft rule NF. Its proximity
to failure left all data points solvable and still improved the
average performance of Ochiai by 34.6%.

An actual maintainer who is debugging an issue is in a
much better position. Once the test suite is fully known and



the tester knows the tests they provided, the over-fitting seen
in RQ3 can be avoided. The resulting filters not only reduce
noise and double formula performance but also speed up the
whole ranking process.

b) Dealing with uncovered Faults: We have seen a total
of 4 uncovered bugs, where we observe both a semantically
correct test failure and there is a connected piece of faulty
code, yet the faulty location is not covered by its test. This
happens due to system-level tests in the unit test suite or due
to code generation. While code generation is more prominent
in FP, Java has similar problems for system-level tests, e.g.,
in micro-service architectures [39]. Due to (all) formulas
requiring a test failure to rank locations higher than zero,
unassisted SBFL cannot locate these bugs. We suggest to
utilizing Test Generation[40] and in particular Test
Carving [41], [42]. Such approaches can generate tests
exploiting the existing miss-locating test as an oracle, and
might benefit from the enriched spectra as well: In the case of
code generation, there is direct relation between structure (e.g.,
code layout), types (which type results in which generated
type), and naming (generated code often follows framework-
specific conventions). This might be the best pursuit in Java,
as a rich body of existing literature and tools exist.

c) Chances for imperative Programming: Haskell is not
exactly a wonderland of fault localization — but we believe
that some of the rules implemented in this work are (easily)
transferable to Java and C. Both languages utilize types,
and we have seen that type length is a decent proxy for
type complexity. While more nuanced, looking for sub-types,
functions, polymorphism, or generics might not be necessary
given the results obtained in our work.

Unit tests form the focus of fault-localization for e.g., Java,
but detecting other frameworks can be achieved programmati-
cally (by looking for framework keywords and annotations) or
heuristically by the naming conventions. Java unit tests could
also provide other information to consider, for example, if pre-
and post-conditions are specified (JUnits @BeforeEach and
@BeforeAll). In a similar fashion, Java has an AST too, yet
access to it requires meta-programming libraries or other forms
of additional instrumentation. From this work, we see that the
most relevant AST attribute is NF: proximity to failure. Our
intuitive guess is that Java would benefit from similar simple
heuristics, e.g. is in failing class or is in failing module. Work
on fault localization that tried to identify faults on a file level
[43] might be sources of such filters.

VI. THREATS TO VALIDITY

External Validity: Our dataset/benchmark comprises 11
real-world Haskell projects maintained by different developer
teams from different application domains. Nonetheless, the
results might not generalize to other Haskell projects or pro-
gramming languages. However, the rule set we have developed
is based on general programming concepts and could be
applied to other languages, including imperative languages like
Java. We have elaborated on this aspect already in Section V.
Besides, as discussed in Section III-C, the programs and bugs

used in this work are comparable in size to Defects4J, which is
a widely used Java benchmark for fault localization research.

Construct Validity: The implementation of the rules and
generation of the spectra are based on the HPC tool, which
is a standard tool for Haskell code coverage. The rules
could be further refined or extended to improve the fault
localization performance and capture different aspects of the
code. Another potential threat is related to the possible bias of
our conclusions with regard to the choice of SBFL formulas.
To address this, we selected multiple formulas (e.g., DStar,
Tarantula, Ochai) that are widely used in the literature. Our
results show that the rules can improve the performance of
these formulas, although with differences in the extent of
improvement. To analyze our results, we use well-established
performance metrics, such as TOP-X and EXAM, which are
widely used in the literature. However, these metrics might
not capture all aspects of the fault localization performance.

VII. CONCLUSION

This paper aims to improve spectrum-based fault local-
ization by filtering the spectra using AST- and type-based
rules. To achieve this, we implemented a Tasty ingredient that
allows the generation of spectra with expression-level gran-
ularity, including additional information on types and identi-
fiers. Making use of the richer information, we implemented
rules that capture the complexity of types, AST structure,
or identifiers and applied them to filter a total of 11 real-
world programs. The results indicate that even single rules can
improve formulas like Ochiai by 42% by reducing irrelevant
locations. Combining rules leads to diminishing returns and
faces the possibility of over-fitting and should only be applied
by educated users. Our exploration further uncovered unique
kinds of failures: faults that were not covered by failing tests.
Further research should focus on transferring these filters
toward imperative languages, like Java, and automatically fine-
tuning rules on a per-project basis.
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[10] Q. I. Sarhan and A. Beszédes, “A survey of challenges in spectrum-based
software fault localization,” IEEE Access, vol. 10, pp. 10 618–10 639,
2022.

[11] A. Panichella, F. M. Kifetew, and P. Tonella, “Automated test case
generation as a many-objective optimisation problem with dynamic
selection of the targets,” IEEE Transactions on Software Engineering,
vol. 44, no. 2, pp. 122–158, 2017.

[12] L. Naish, H. J. Lee, and K. Ramamohanarao, “A model for spectra-
based software diagnosis,” ACM Transactions on software engineering
and methodology (TOSEM), vol. 20, no. 3, pp. 1–32, 2011.

[13] J. A. Jones, M. J. Harrold, and J. Stasko, “Visualization of test
information to assist fault localization,” in Proceedings of the 24th
International Conference on Software Engineering, ser. ICSE ’02.
New York, NY, USA: Association for Computing Machinery, 2002, p.
467–477. [Online]. Available: https://doi.org/10.1145/581339.581397

[14] J. A. Jones and M. J. Harrold, “Empirical evaluation of the tarantula
automatic fault-localization technique,” in Proceedings of the 20th
IEEE/ACM international Conference on Automated software engineer-
ing, 2005, pp. 273–282.

[15] M. Papadakis and Y. Le Traon, “Effective fault localization via mutation
analysis: A selective mutation approach,” in Proceedings of the 29th
annual ACM symposium on applied computing, 2014, pp. 1293–1300.

[16] ——, “Metallaxis-fl: mutation-based fault localization,” Software Test-
ing, Verification and Reliability, vol. 25, no. 5-7, pp. 605–628, 2015.

[17] S. Moon, Y. Kim, M. Kim, and S. Yoo, “Ask the mutants: Mutating
faulty programs for fault localization,” in 2014 IEEE Seventh Inter-
national Conference on Software Testing, Verification and Validation.
IEEE, 2014, pp. 153–162.

[18] F. Li, M. Wang, and D. Hao, “Bridging the gap between different
programming paradigms in coverage-based fault localization,” in Pro-
ceedings of the 13th Asia-Pacific Symposium on Internetware, 2022, pp.
75–84.

[19] L. C. Ascari, L. Y. Araki, A. R. Pozo, and S. R. Vergilio, “Exploring
machine learning techniques for fault localization,” in 2009 10th Latin
American Test Workshop. IEEE, 2009, pp. 1–6.

[20] S. Pearson, J. Campos, R. Just, G. Fraser, R. Abreu, M. D. Ernst,
D. Pang, and B. Keller, “Evaluating and improving fault localization,”
in 2017 IEEE/ACM 39th International Conference on Software Engi-
neering (ICSE). IEEE, 2017, pp. 609–620.

[21] M. Gao, P. Li, C. Chen, and Y. Jiang, “Research on software multiple
fault localization method based on machine learning,” in MATEC web
of conferences, vol. 232. EDP Sciences, 2018, p. 01060.

[22] A. Gonzalez-Sanchez, E. Piel, H.-G. Gross, and A. J. van Gemund, “Pri-
oritizing tests for software fault localization,” in 2010 10th International
Conference on Quality Software. IEEE, 2010, pp. 42–51.

[23] G. Dandan, W. Tiantian, S. Xiaohong, and M. Peijun, “A test-suite reduc-
tion approach to improving fault-localization effectiveness,” Computer
Languages, Systems & Structures, vol. 39, no. 3, pp. 95–108, 2013.
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