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Functional Spectrums - Exploring Spectrum-Based
Fault Localization for Haskell

Anonymous Author(s)∗

Abstract
Fault localization plays an important role in debugging, one
technique thereof is spectrum-based fault localization, which
uses tests and program coverage to produce a spectrum of
locations involved in passing and failing tests. Despite its ex-
tensive application in Java, this technique remains underex-
plored within functional programming languages. This gap
underscores a critical challenge: adapting spectrum-based
fault localization to accommodate the unique characteris-
tics of functional paradigms. Addressing this challenge, we
evolve current spectrum-based approaches by extending the
spectrumswith types and AST structure.We introduce a rule-
based system tailored to capture more complex attributes of
the spectrum. Spectrums are generated using an ingredient
for the Tasty test framework, which allows easy adoption
and reproducibility. Through an empirical study involving
11 real-world programs, we meticulously investigate the
generated spectrums along with the effectiveness of the rule-
based system and their correlation to faults. Furthermore,
we employ a set of classifiers to evaluate the potential for
cross-program extrapolation of our findings. For most bugs,
conventional spectrum-based formulas perform promisingly
well in a functional context and are only outperformed by
classifiers that incorporate these formulas.

CCS Concepts: • Software and its engineering→ Func-
tional languages; Software testing and debugging.

Keywords: Laziness, Fault Localization, Functional Program-
ming, Haskell
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1 Introduction
Functional programming has earned a reputation for being
at the forefront of type and programming language research,
but we believe it can also be a champion of tooling and
software engineering practices.
It remains open what tooling functional programmers

really want, but tooling they need. Haskell is known for
innovating in more niche features like software transactional
memory and techniques like property-based testing. It has

Haskell ’24, September 02–07, 2024, Milan, Italy
2024. ACM ISBN 978-x-xxxx-xxxx-x/YY/MM
https://doi.org/10.1145/nnnnnnn.nnnnnnn

innovative tools like theHoogle search engine, but we believe
we can innovate further and introduce tools that would be
harder to develop for other paradigms.
Tools are quite important to software developlent. Ac-

cording to modern developer surveys, approximately 50%
of development is spent debugging, half of which is spent
fixing bugs [3]. An important part of the debugging process
is fault localization, i.e. determining which part of the pro-
gram is at fault, which can be assisted by specialized tools.
This challenge spans most software paradigms, including
functional programming [10, 17].

One way to assist the fault localization process is to intro-
duce automated tools [11, 24], for example, spectrum-based
fault localization (SBFL). A program spectrum is a matrix
where the rows represent test results and the columns rep-
resent code locations. Each entry indicates whether that
location was involved in the test or not, with an additional
column that indicates whether the test passed or failed. A
program spectrum is created by running individual tests and
collecting program coverage [27]; thus capturing different
aspects of the program by branching over the test suite. Pro-
gram spectrums have been successfully applied in imperative
languages, based on the premise that by comparing elements
involved in failing tests and those involved in passing tests,
we can deduce which location is at fault. However, they have
yet to become established in functional communities.

1.1 Example
Consider the function and properties in fig. 1.

1 foldInt :: (Int -> Int -> Int) -> Int -> [Int] -> Int
2 foldInt _ z [] = 0
3 foldInt f z (x:xs) = (foldInt f z xs) `f` x
4

5 prop_sum, prop_prod, prop_diff :: [Int] -> Bool
6 prop_sum xs = foldInt (+) xs 0 == sum xs
7 prop_prod xs = foldInt (*) xs 1 == product xs
8 prop_diff xs = foldInt (-) xs 0 == negate (sum xs)

Figure 1. A buggy program and associated properties

Here, we intended to implement a fold, but made a mis-
take: we accidentally wrote 0 instead of z in line 2. The
prop_sum and prop_diff touch all locations in the spec-
trum, but prop_prod only touches the base case, since Quick-
Check’s initial test is always [].

Running the properties for the program in fig. 1, produces
the spectrum in table 1. A standard spectrum consists of only
the tests, whether they pass or fail, and the locations involved
in each test. In this paper however, we produce augmented

1
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Table 1. A spectrum for the code in fig. 1
name type result 2:18 3:31 3:35-36 3:22-37 3:43 3:22-43 2:1-3:43
type Int Int -> Int -> Int [Int] Int Int Int

identifier f xs x

sum QC True 100 2162 2255 2255 2255 2255 2355
prod QC False 1 0 0 0 0 0 1
diff QC True 100 2224 2319 2319 2319 2319 2419

spectrums. These augmented spectrums also include the
types of expressions and tests involved, the name of the
identifier, and the number of evaluations of this location in
the test. The notation 2:18 represents line 2 column 18, and
- indicates a range of characters.

Tarantula:

𝑛𝑒𝑓

𝑛𝑒𝑓 +𝑛𝑡𝑓
𝑛𝑒𝑓

𝑛𝑒𝑓 +𝑛𝑡𝑓
+ 𝑛𝑒𝑝

𝑛𝑒𝑝 +𝑛𝑡𝑝

Ochiai:
𝑛𝑒𝑓√︃

(𝑛𝑒𝑓 + 𝑛𝑡𝑓 ) (𝑛𝑒𝑓 + 𝑛𝑒𝑝 )

Figure 2. Standard SBFL formulas. 𝑛𝑒𝑓 and 𝑛𝑒𝑝 are the num-
ber of times the expression 𝑒 is involved in a failing or passing
test respectivley, while 𝑛𝑡𝑓 and 𝑛𝑡𝑝 is how many total failing
and passing tests there were.

Using the formulas detailed in fig. 2 on the spectrum, we
can score the locations as detailed in fig. 3. Here, the most
suspect location is indeed the underlined 0 in 2:18: it is
involved in more failing tests than other locations, apart
from the definition of the foldInt that spans lines 2 and 3.

Location Ochiai Tarantula

2:18 0.577 0.5
2:1-3:43 0.577 0.5
3:31 0 0

Figure 3. Top 3 suspiciousness scores from classic SBFL
formulas, with the bug location in bold.

Although replacing the definition of foldInt is certainly
an option, the type information in the augmented spectrum
allows us to distinguish expressions from locations. Using
the type information to deduce that 2:18 is an expression,
we can break the tie and correctly point to 0 as the most
suspicious expression in the spectrum. Still, its not often
as clear which location is at fault. If we got the base case
correct but had written f x (foldInt f z xs) in line
3, we would have the traditional foldr instead of a flipped
foldr as presented here. Running the properties again, this

1 foldInt :: (Int -> Int -> Int) -> Int -> [Int] -> Int
2 foldInt _ z [] = z
3 foldInt f z (x:xs) = f x (foldInt f z xs)

Figure 4. The program from fig. 1, slightly modified.

accidental foldr produces the spectrum in table 2. Here, it
is not as clear which location is at fault: while prop_sum
and prop_prod pass, now prop_diff fails and touches all
except f in foldInt f z xs in line 3, since QuickCheck tests

the empty list and then singleton lists. This exonerates the
base case, but does not help us to distinguish the remaining
locations. As seen in fig. 5, formulas fall short in this case.

Location Ochiai Tarantula

2:18 0.577 0.5
3:24 0.577 0.5
3:37 0.577 0.5

3:39-40 0.577 0.5
3:26-41 0.577 0.5
3:22-41 0.577 0.5
2:1-3:41 0.577 0.5
3:35 0.0 0.0

Figure 5. Classic SBFL formula scores (bug location in bold).

While this would be a challenge to traditional SBFL formu-
las, our rule-based approach allows us to distinguish these
cases, by inspecting the AST structure, types, and identi-
fiers. The rule-based approach is detailed further in sec-
tion 3.2, but for this example, we could proceed as follows:
we can filter out the non-expression by limiting ourselves
to only those locations that have a type. In this case, we see
that the columns for the remaining faulty expressions look
the same, except for 2:18. We then sort by the AST-based
rTFailFreqDiffParent rule (see section 3.2), which assigns
a value of 0.71 to z in 2:18, 2.29 to f x (foldInt f z xs)
in 3:22-41, and 3 to all the others: most locations are evalu-
ated alongside their parent, but 3:22-41 and 2:18 are not
always evaluated with their parent (2:1-3:41). As the test
is a property and properties test the base case first, a failure
for the empty list would result in fewer evaluations, similar
to what we saw in table 1. With that, we can rank 3:22-41
as the most suspicious. This motivates us to do a detailed
analysis to shed light on which attributes are important.

1.2 Contributions
In this paper, we apply spectrums and existing suspicious-
ness scoring algorithms to Haskell and enrich it with unique,
novel features: We use Haskell Program Coverage (HPC)
instrumentation to determine whether an expression was
touched during a test, but also to extract how often the lo-
cation was evaluated. We note the test-framework (Quick-
Check, Hunit, etc.) for later progressing, and capture the
type, constraints, and identifiers of locations that correspond
to expressions within the spectrum, forming a richer spec-
trum than existing literature. We aim to cover many Haskell-
specific attributes of test-cases and programs by these changes.
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Table 2. A spectrum for the code in fig. 1, with a fixed based case but f x (foldInt f z xs) in line 3
name type result 2:18 3:24 3:35 3:37 3:39-40 3:26-41 3:22-41 2:1-3:41
type Int Int Int -> Int -> Int Int [Int] Int Int

identifier z x f z xs

sum QC True 100 2654 2560 2654 2654 2654 2654 2754
prod QC True 100 2604 2509 2604 2604 2604 2604 2704
diff QC False 7 4 0 4 4 4 4 11

We provide the tool for spectrum generation as an ingredient1
for the popular Tasty test framework.
To explore the spectras and generate new findings, we

implement a rule-based approach to merge novel features
and existing approaches. The targets for rules are (1) test
attributes (test types, executions, frequency), (2) program
attributes (AST structure), (3) existing SBFL formulas, and (4)
type-based complexity measures (constraints, arity, order).

The overall goal is to see whether the additional rules be-
yond existing literature improve fault localization for Haskell
programs. To rank the locations for their suspiciousness, we
concatenate the rule results into a vector and apply simple
machine learning (ML) algorithms such as linear regression,
decision trees, and (shallow) neural networks. We chose sim-
ple predictors to maintain explainability and ease of compar-
ison. For instance, decision trees provide a transparent view
into the rules most effective at isolating specific bugs, while
regression models capture the correlations between rule at-
tributes and the presence of faults. They directly correlate
with different features and form an insight themselves.

Rather than striving for improved outcomes by selectively
interpreting metrics or meta-tuning classifiers, our goal is
to offer insights and trends encompassing both successful
and unsuccessful techniques. We provide an easy-to-adapt
tool for practitioners and researchers to extract rich spectra.
Popular open-source projects are used to verify the feasibility
of spectrum extraction. Real-world bugs are analyzed in
detail by formulating rules that capture spectrum attributes.
Known SBFL formulas are re-applied and investigated for
suitability, and some simple ML algorithms are tested with
rule-based vectors.

The total overview of the pipeline is seen in Figure 6. The
novel elements and contributions are marked as bright-blue.

Research Questions. We first investigate the spectrums
and look what attributes distinguish them from their non-
faulty counterparts.

RQ1.A: Spectrums of functional Programs
What attributes significantly differentiate faulty and non-
faulty expressions within spectrums?

Before adaptations, it is worth looking at how existing
research performs for typed functional programs.We thus ap-
ply common spectrum-based formulas from literature, sum-
marized in table 7 in the appendix.
1currently anonymized for peer-review

Figure 6. Overview of the fault localization Pipeline

RQ1.B: SBFL Formulas for functional Programs
Howwell do existing SBFL formulas perform for the given
Haskell dataset?

We aim to capture certain attributes of spectrums and
their expressions through rules. After implementation, it
remains to see if they are applicable. RQ1.C investigates the
characteristics of the rules when applied to the spectrum:

RQ1.C: Applicability of Spectrum-Based Rules
What are the most prominent rules triggered by faulty
expressions?

As a final subject of investigating the underlying programs,
we analyze correlations between the rules and formulas.

RQ1.D: Correlation of Spectrum-Rules
Are there significant correlations between the rules for
faulty expressions?

Based on the original data investigation and rules, we
apply a set of different simple classifiers and regressors to the
data. Due to the exploratory nature, we focus on explainable
models and investigate their attributes after fitting.

RQ2.A: Attributes of simple SBFL Models
When fitted to a data point, what rules were the most
important for the different models? Are there reoccurring
patterns and weights?

A common use of a model is to diagnose faults in (unseen)
data, which makes debugging more effective. With RQ2.B we
want to see how well the models perform on the programs

3
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that they are not fitted for, and if there are recurring patterns,
successes, and challenges among them:

RQ2.B: Generalization of SBFL Models
How well do the fitted models perform on programs and
faults outside of their training data?

In summary, this research aims to a analyze a sample of
real world faults and b explore directions for predictors
that perform better than existing formulas.

2 Background and Related Work
Spectrum-based Fault Localization. Spectrum-based

fault localization (SBFL) was developed as a technique to
cover well-testable issues related to the year 2000 problem
[27], and is considered one of the most prominent due to its
efficiency and effectiveness [29]. After defining a failing test
that triggers the Y2k problem of an application, the program
tests were executed in order, and their coveragewas recorded.
Under the assumption that there are (passing) tests covering
expected behavior, the issue must originate in statements
covered by failing tests without being in passing tests.
The Y2K problem consists of straightforward fixes, and

thus it is difficult to transfer the techniques developed there
to more complex issues. Nevertheless, the idea of collecting
per-test coverage to narrow down suspicious statements
formed the core of modern SBFL: from the initial concept
of intersection, many techniques emerged that use formulas
[11, 12, 16, 32] to assign suspiciousness scores to different
parts of the program. With differences in the details, all
formulas take into account how often a given statement was
touched by failing and passing tests, in addition to global
attributes of the spectrum (e.g., total number of failing tests).
The result of the formulas is used to produce a ranking of
(all) statements and report the most suspicious locations.

An important piece of work from which we draw is from
Naish et al. [22] which discusses the mathematical attributes
of spectrum-based formulas. In addition to introducing two
new formulas, they prove that some formulas must result in
the same ranking (equivalence classes). Within this work, we
aim to implement at least one formula from each identified
equivalence class.

Other Fault Localization efforts for functional pro-
gramming. Fault localization in a functional setting has
been explored in Liquid Haskell [30], using refinement
types, a type system augmented with logical predicates.
They collect constraints and localize faults bymapping amin-
imal set of atomic unsatisfiable type constraints to likely bug
locations. The work relies on a more powerful type system
than Haskell has, namely liquid types, which localize (and
repair) errors on the type level. The Liquid Haskell approach
requires precise modeling of the expected system-behavior
at the type level, which often means giving up type-inference

In this work, we target programs with existing test suites,
and enable developers to get more out of previous testing
efforts. Using liquid types, a form of test generation can
form supplementary work similar to test generation efforts
in program repair.

2.1 Related Work
Li et al. Comparable work on spectrum-based fault lo-

calization for Haskell originates from Li et al. [14]. They
collect open source bugs and apply existing SBFL formulas
on an expression-level spectrum. To improve generalizabil-
ity and introduce an ML approach, the programs were also
mutated to extend their data set. Although they publish the
dataset which we reuse, the original code is not available.
Li et al. have similar goals in introducing SBFL for Haskell,
but many of the details differ. On a more fundamental level,
our spectrums extend previous work with unique attributes
of types, tests, and identifiers. We introduce rules that ex-
tend the existing literature to capture more concepts than
SBFL formulas currently can. Their approach includes data
augmentation, which forms a great venue to synthesize the
efforts of both works in future research.

HaskellFL. implements the Ochiai and Tarantula algo-
rithms for Haskell code [31]. They develop a custom com-
piler that compiles the program into SKI-combinators for
evaluation, to determine the lines involved in a fault. As
they do not integrate with HPC or GHC, an application for
real-world programs proves difficult, and no evaluation on
large programs is provided.

3 Implementation & Experiment Setup
3.1 Spectrum Generation
We introduce a tasty-spectrum package which adds an
ingredient to the Tasty test framework that captures cov-
erage when tests are run and generates a spectrum. Tasty-
Ingredients are a modular way to implement plugins for
Tasty to add additional behavior around tests such as re-
running, timeouts, or, in this case, data extraction.
To generate spectrums, we use the instrumentation pro-

vided by Haskell Program Coverage (HPC) and programs
compiled with the -fhpc flag. This generates .mix files that
allow HPC to connect the indices it produces to the source
locations in the modules. Our implementation also includes
a GHC source plugin, which integrates with the compiler
and extracts type and identifier information from modules
during compilation and generates .types files.

GHC Source Plugins. GHC allows users to define source
plugins, which are run at the end of various stages of compila-
tion, including parsing, type-checking, and renaming. These
plugins allow the user to modify and interact with the source
code after each stage. In the tasty-spectrum package, we
define a plugin that operates at the end of the type-checking

4
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stage, where we traverse the type-checked expressions, and
note their types in the .types file. The .types files are saved
alongside the .mix files and later combined with the .mix
information during spectrum generation.

Haskell Program Coverage (HPC). HPC instrumenta-
tion is integrated into GHC, and is based on maintaining an
array that counts executions for each source location (which
corresponds to expressions) in the module during runtime.
Whenever an expression is evaluated, this triggers a “bump”
in the array, allowingHPC to track the number of times each
expression was evaluated in the module. This array allows
access, manipulation and re-initialization at runtime.

Spectrums are generated by running the test suite. As the
code has been compiled with the -fhpc flag, the RTS will
keep the Tix array in memory. Before running each test, we
reset theHPC state. After each test, we read the current state
of HPC, and track which expressions were evaluated.

After running all tests, the Tix array for each test is com-
bined with the module structure from theMix files and the
type/identifier information from the .types files to produce
a type-augmented spectrum as a .csv file. To compress the
data, we only include locations that are involved in any of
the tests, excluding those that have zero evaluations across
the test suite.

3.2 Rules
Fault localization commonly ranks locations based on their
suspiciousness. To achieve this, the information in the spec-
trum is quantified and turned into a score. This is tradition-
ally done using formulas that depend on the number of times
a location is involved in passing or failing tests, 𝑛𝑒𝑝 and 𝑛𝑒𝑓
respectively, and the number of total passing and failing
tests, 𝑛𝑡𝑝 and 𝑛𝑡𝑓 . In our analysis we include these classic
formulas, but also quantify other elements of the augmented
spectrum, aiming to find correlations with faults.

• Test-type count the number of tests, passing or failing,
that this location is involved in.

• SBFL-Formulas apply existing formulas from previous
literature; the rule output is the calculated value of
the formula.

• AST structure-based rules use information based on the
distance from a failing location or whether a parent
or sibling was executed often.

• Type-based rules are based on analysis of the available
types and constraints of a location.

• Meta-rules operate on the results of the previous, per-
module, rules and supplement the data with further
analysis. These include the quantile rules and the rules
that count how often types, component types, and
identifiers appear in failing tests.

Table 4 provides an overview of the type-based rules.
We want to further motivate some of the rules presented

in table 7. One general notion is that properties are stronger

than regular unit tests, as they cover a wider range of input
values and have logic beyond an assert. It makes sense to
rate an expression that is in many passing properties as less
suspicious. In a similar, less algorithmic viewpoint, golden
tests, i.e. tests that use output comparison, are often written
after users report a bug. Thus, it could make sense to rate
golden test failures as more suspicious, as they often capture
failing behavior, contrary to properties that often test posi-
tive program paths. Taking this into account, there is no one
test better than the others - but there might be patterns that
we only find when inspecting them separately.

Table 3. Rules based on AST-based behavior
rASTLeaf Counts the distance of this node to

the nearest leaf.

rFailUniqueBranch Times this location is touched by fail-
ing test that touches none of its sib-
ling expressions.

rFailFreqDiffParent Ratio of evaluations compared to
parent-evaluations.

rDistToFailure Distance to a location touched in a
failing test, by counting links to a
common parent.

AST rules (seen in table 3 are based on existing research
on active and algorithmic debugging [4, 8, 18]. They aim
to capture differences in executions relative to parents and
neighbors and reflect control-structures and program flow.
With the group of type rules in table 4, we aim to proxy

the complexity of an expression and its context. We expect
longer types to indicate a more complex process; especially
higher-order functions are a unique case of complexity that is
well represented at the type level. rNumSubTypeFails aims
to connect types seen in failing locations with seemingly
un-connected locations — the rationale being that concepts
in the program are expressed as types, and there can be a
failure in the concept. rTypeArity and rTypePrimitives
allow us to identify correlations of faults with parts of a
type and form basis of analysis, e.g. if faults occur in basic
elements or complex compositions.
Unlike SBFL formulas, our novel rules are not intended

as ranking algorithms, but rather as intermediate results for
analysis, model features, and tie breaking (e.g. in table 2).

3.3 Data
We draw data from two Haskell fault datasets, HasBugs [1]
and HaFla [14]. Both datasets provide a similar granularity
of faults originating from projects with known faults (based
on issues and PRs) whose fault-fixing commits include a
test. These tests were extracted to produce a faulty but tested
version with a failing test suite. We determine faulty expres-
sions as all expressions that are completely within faulty
lines, extracted from the git-difference.
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Table 4. Rules based on the expressions type
rTypeArity &
rTypeConstraints

Number of arguments and constraints the
function has.

rTypeArrows Number of arrows (->) in the type

rTypeFunArgs Numbers of parentheses in the type to
quantify how many function arguments
there are, and in turn whether it is a
higher-order function or not.

rTypeOrder Counts the number of type applications
in the type, such as Maybe a or [[a]]

rTypePrimitives Number of primitives, i.e. String or Int.

rTypeSubTypes Counts the number of types in the type,
i.e., unfolds all constructors and applica-
tions.

rTypeLength Number of Characters of the Type, when
represented as String.

rNumSubTypeFails Number of times types which appear in
this type are involved in a location in-
volved in a failing test.

A subset of the data was chosen to produce the spectrums
that met the required versions of Cabal, tasty (>v1.0), and
GHC (>= 8.6). Other limitations excluded projects like Pure-
script (many of the tests run against compiled Javascript) or
Cabal (all bug-asserting tests are package-level tests outside
the tasty test suite). This results in a total of 11 programs2
from 3 projects - Pandoc, Duckling and anHLS-plugin. An
overview of the data points used is presented in table 5.

Pandoc is a document converter and, outside of language-
specific tooling (GHC, Cabal, HLS, etc.), the biggest Haskell
project with over 50k lines of code. The general flow of
conversion consists of three steps: a reader, an internal rep-
resentation, and a writer. Most bug reports and issues are
based on user-perceived misbehavior, which is commonly
captured with a unit or golden test.

HLS is a joint community effort of Haskellers to provide
the backbone of a modern Haskell IDE. Most of it is centered
on providing a language server in typescript style for the
popular Visual Studio Code. Apart from a base framework,
many functions are provided as plugins to cover linting, type
suggestions, suggested imports, and other features.
Duckling is an open-source Facebook project that ex-

tracts structured entities (times, dates, weights, etc.) from
texts. The general business logic consists of regex-based
rules that are applied in a fine-to-coarse fashion The test
suite consists of a domain-specific corpus with examples and
broad tests that run all examples within a corpus. Generally,
the corpus is structured per module, which is why the duck-
ling data points only show one test failure, despite multiple
examples being added to a corpus.

29 from HasBugs, two from HaFla

Comparison with Defects4J - Comparing the spectra
between paradigms is challenging, but to approximate, we
consult some data from Defects4J [13]. We draw our data
from a public repository shared by René Just3 that provides
statistics from applying GZoltar [28] to a subset of 395 bugs
from Defects4J.

The Defects4J bugs inspected have a mean Source lines of
code(SLOC)[23]4 of 57.7k and a median of 62.5k. The mean
number of tests in Defects4J is 1439, with a median of 202,
with an average of 2 failing tests. Under the assumption
that most of the SLOCs represent line-level statements, the
resulting spectrums will have a comparable number of el-
ements. The we approximate faulty SLOC for Defects4J as
an average of 2.56, based on the lines removed by the patch.
In conclusion, the programs and bugs used in this work are
comparable in size to Defects4J.

3.4 Experimental Setup
Based on the fault fixing commits of a data point, we revert
the source code patch while keeping the changes to the test
code, observing a test failure during cabal test. At this
stage, we also distinguish noisy test failures as mentioned in
table 5, marking tests that fail before and after the changes
as noisy. As the next step, the cabal file is altered to include
spectrum generation and coverage, following the descrip-
tion in section 3.1 These result files form the basis of a data
analysis, done in Python.

RQ1 is answered by investigating the results of their trig-
gered rules. Many of the spectrum attributes are directly
captured in rules (e.g., rTFail corresponds to was touched
by a failing test), and thus facilitate the analysis of distribu-
tions and proportions.

The primarymetric considered for ranking the expressions
is the Top-X-metric [9]. Within TopX, the recommended el-
ements are sorted by their suspiciousness, and the correct
classifications (truly faulty expressions) within the first X are
counted. For this work, we considered the Top10, Top50 and
Top100, following previous literature.

Another common metric is EXAM [26], assuming that the
user follows every recommendation in order until the real
fault(s) are fixed. The index of the first correct fault is used
to calculate the ratio of the inspected (total) program, with
the exam score expressing how many locations can be skipped
when following the recommendations? The EXAM score is
proportional to the mean reciprocal rank, another metric
commonly reported for FL. For this work, we discarded MRR
and EXAM, as we work with different granularity due to our
expression level spectrum: when introduced in 2003, EXAM
was targeting block-level spectrums, but the sheer difference
in the quantity of mostly (benign) expressions would draw

3https://bitbucket.org/rjust/fault-localization-data/src/master/
4SLOC are lines of code, after removing whitespace and comments.
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Table 5. Overview of the used data points
Data
Point

Issue Faulty
LOC

Faulty Ex-
pressions

Total Ex-
pressions

Failing
Tests

Noisy Test-
Failures

Total
Tests

pandoc-
3be256efb

Wrong application of ’Big Note’ highlighting when converting
to LATEX. Reordering necessary.

1 6 88k 6 0 3254

pandoc-4 Failure converting combined code and bold text to LATEX. 3 12 91k 1 1 3056

pandoc-5 Misinterpretation of code blocks when converting to ROFF MS.
Requires escaping.

1 8 61k 2 6 2400

pandoc-6 Misconverting code blocks starting with (1) into enumerations. 5 39 59k 10 13 2365

pandoc-7 Empty multi-cells not picked up when reading LATEX. 27 72 61k 3 7 2415

hls-2 Issue accounting for relative location "./" instead of expected "." 2 15 269 1 0 6

hls-
afac9b18

HLS-Plugins can reformat code, Stylish Haskell was removing
the last line of files regardless of whether they had content.

1 17 122 2 0 13

duckling -
ea8a4f6d

Wrong pronomina for German million. Regex adjustment. 1 5 288k 1 0 364

duckling -
4cfe88ea

Missing combined durations cases (e.g "2 hours and 20 min-
utes")

18 4 260k 1 1 342

duckling -
28ddc3bf

Wrong parsing of 1.000,00 for Dutch. 1 5 299k 1 0 346

duckling -
328e59eb

Missing cases for weights (and combinators) in Portuguese
language.

19 26 277k 1 1 360

a highly beneficial picture of our approach. Therefore, for
ranking evaluations, we focus on the TopX metrics [33].

RQ2 is investigated by training classifiers and regressors
on the result files. Namely we implemented decision
trees, random forests, linear-& logistic regression
and Multilayer Regressors from SciKit [25]. At last, we
considered a genetic algorithm using Pymoo [2] for an evo-
lutionary search of regressor weights.
To separate the effects of the new rules from existing

rules, we assert a total of four configurations: all, classic
(existing sbfl formulas), original (only novel rules added by
this work) and cherries (a handpicked set of rules and for-
mulas). To account for different value ranges, we re-run all
experiments with min-max-scaling, mapping all features
to values between 0 and 1. In the remainder of the paper, this
is represented by the terms scaled (min-max scaling applied)
and unscaled.

Fitting the binary classifiers (decision tree, random forest,
logistic regression) targets locations to be faulty or not faulty.
Regressors are trained to assign faulty locations with a sus-
piciousness of 1 while other locations have a suspiciousness
of 0. In the remainder of the paper models are named after
their training data, e.g. Pandoc-3 model. For persisting trends
of a single project, pandoc models refers to all models based
on pandoc programs.

GA-based regression. . GAs utilize a custom fitness func-
tion to optimize the ranking of the first reported faulty lo-
cations, effectively optimizing on TopX. For GAs, we set the

population to 200 individuals and use Latin Hypercube Sam-
pling [19] to generate the initial population. The population
is then evolved trough subsequent generations, by using bi-
nary tournament selection [20], for selecting the solutions
(regression weights) for reproduction based on their fitness.
Simulated Binary Crossover [7] SBX is used to recombine the
selected solutions, and polynomial mutation [6] (PM) is used
to introduce diversity to the population. We opt for these
genetic operators and their recommended parameters values
(i.e., SBX with index 𝜂𝑐 = 30, PM with index 𝜂𝑚 = 20 and
probability 𝑝𝑚 = 1/𝑛, with 𝑛 being the number of regression
weights), as they are known to be effective in solving con-
tinuous optimization problems [6]. GAs are set to run for
2000 generations or terminate early if no improvement in the
fitness function is observed for 100 generations. The solution
weights in the final population with the best value of the
fitness function is used as the final GA-based regression.

Regressors are evaluated on the resulting TopX, while for
classifiers, true and false positives are evaluated. A global
seed was used to account for inherent randomness.

4 Results
Attributes of Spectrums. The created spectrums range

in size from 25Kb (HLS), 200 MB (duckling) to up to 500 MB
(Pandoc). Spectrum generation is not a costly addition to the
runtime of tests, but compilation time of projects is longer
as the -fhpc flag is required.
Table 8 groups the expressions into those touched by

failing tests and those that are not. This allows for shrink-
ing the spectrum, assuming that statements without failing
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tests are innocent. When organized in this way, we see that
duckling-4cfe88ea, duckling-ea8a4f6d, duckling-1dac46a8
and pandoc-4 do not have faults covered by the tests.
The authors double-checked the test suite, and for duck-

ling, the correct (and expected) corpus tests were failing. We
suspect that the tests do not run against the original source,
but generated code. The generated code is also faulty but is
not the origin of the issue, as fixed in the commit. Some of the
duckling datapoints, e.g. duckling-328e59eb have faults
covered by failing tests. The fix for duckling-328e59eb is
more than the adjustment of a regex, and the changes to the
structure are successfully tested and represented in the spec-
trum. For pandoc-4 there are faulty locations on a reader
that need changes in the data format. The relevant golden
test runs with a compiled binary of pandoc (unlike the
other pandoc data points) that is invoked by tasty, which is
not collected in project coverage. Thus, we have a failing
test suite, but the touched expressions originate only from
noisy test failures.

The existence of faults that are not directly covered poses
a challenge for this work and a novel aspect of fault localiza-
tion. Stemming from real projects, the tests are realistic and
express community efforts. Although tests cover bugs se-
mantically, it does not cover the faulty code and require new
spectrum techniques. Due to the common usage of Haskell
for domain-specific languages, parsers, and code generation
tooling, we expect these types of faults to be more common
in functional paradigms than in other languages.

On average, 63.7% of faults are in AST leaves, while 50.5%
of expressions are leaves. For duckling, most changes were
adjustments to a regex (AST-Leaf) and their wrappers (non-
leaf) or required the introduction of a new rule. This re-
sults in even distribution of faults in leaves and non-leaves
for duckling. Within Pandoc, many faults revolved around
combinators and parsers, which involve many higher-order
functions. In particular, the program flow in a parser monad
produces many non-leaf faulty locations. The combinators
(<$>, <|>, etc.) and the patterns (many1Char, noneOf, etc.)
are all non-leaf nodes as they require arguments. Due to this
structure, the faults in the pandoc programs are proportion-
ally more in non-leaves than leaves.
Most faulty expressions are typed. Usually, one or two

faulty locations are untyped, which is a special case of am-
biguity that occurs in typing: these are not expressions, but
rather bindings, e.g. x = a. Here, x and a will have the same
type, but the binding x = a does not have a type.
We see no striking trends in the types of faulty expres-

sions; the most common types are primitives such as Text or
UInt, which are also common in non-faulty expressions. The
only exceptional types are monadic parsers in pandoc-6 and
pandoc-7. The use of monads and the higher-order opera-
tors involved is also a reason for the high number of faulty
expressions for these data points, as they imply an increased
number of function applications per line of code.

Although most expressions are typed, only a few repre-
sent an identifier. Less than half of the faulty expressions
correspond to an identifier, and 4 data points do not have
any faulty expressions that correspond to an identifier. The
identifiers encountered match the project vocabulary (e.g.,
parseMultiCell in pandoc-7) with no trend of shorter iden-
tifiers being more faulty. This diverges from existing re-
search’s focus on off-by-one errors [21] or issues in predicates
[15], which also focus on elements with identifiers.

RQ1.A: Attributes of Spectrums
3 Data points (pandoc-4,duckling-4cfe88ea &
duckling-ea8a4f6d) do not have faulty expressions cov-
ered by a failing test, due to code-generation (duckling)
and the test-suite utilizing binaries (pandoc). Two-thirds
of expressions are AST-leaves, whereas about half the
faults are AST-leaves. Almost all faulty expressions have
a type, but identifiers are rare.

Existing SBFL-Formulas. Table 6 shows the Top50 re-
sults when applying existing formulas and sorting the state-
ments by their resulting score. We focus on Top50, as Top10
struggledwith expression-level granularity and Top100 showed
the same trends at a bigger scale. For readability, we reduced
table 6 to the best performing formulas.
Ochiai is the formula that performs best with our data,

followed by DStar. Ochiai is the only formula with a median
Top50 above zero, implying that the other formulas have
not found faults for more than half of the data points. We
expect that Ochiai performs best as it applies the square root
in its denominator, which scales better for large number of
expressions and tests. Ochiai, DStar, and Optimal also do not
use 𝑛𝑡𝑝 (number of total passing tests), which is relatively
high for most programs and disproportionate to the number
of failing tests.

The best average scores are achieved by the strong perfor-
mance of some formulas on pandoc-6 and HLS-afac9b18.
Our educated guess is that pandoc-6 has a large number of
failing tests that exactly distinguish the faulty from the cor-
rect cases. HLS-afac9b18 has a much more favorable ratio
of faulty expressions to expressions, and the newly added
tests primarily invoke the affected faulty statements. Thus,
these two data points play into the strengths of formulas due
to their test quality.

The data points duckling-4cfe88ea, duckling-ea8a4f6d,
pandoc-4 and pandoc-3be256efb did not result in Top50
for any of the existing formulas. Again, we suggest that this
is mostly due to the test suite and its attributes highlighted
in the previous subsection. Without faulty expressions that
are covered by failing tests, most formulas result in a suspi-
ciousness of 0. Furthermore, formulas that include passing
tests also struggle with the duckling data point, since most
expressions are covered by only one or a few passing tests.
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Table 6. Formula Top50 Results
Program Faults Tarantula Ochiai DStar 3 OptimalP
hls-2 15 2 2 2 2
hls-
afac9b18

17 17 17 17 17

duckling-
4cfe88ea

4 0 0 0 0

duckling-
328e59eb

26 1 1 4 0

duckling-
ea8a4f6d

5 0 0 0 0

duckling-
28ddc3bf

5 0 0 0 0

pandoc-4 12 0 0 0 0
pandoc-5 8 8 8 0 0
pandoc-6 39 0 21 21 25
pandoc-7 72 3 3 3 0
pandoc-
3be256efb

6 0 0 0 0

mean 17 2.8 4.7 4.3 4
median 12 0 1 0 0

These few tests are rich as they contain multiple examples,
but do not take advantage of the considered formulas.

The overall applicability of the formulas is quite high. The
small data points of HLS are especially well predictable with
formulas, motivating applications for script-sized programs.
For duckling, organizing tests into a corpus in combination
with code generation makes formulas unsuitable.

RQ1.B: Existing SBFL Formulas
Ochiai and DStar produce the best Top50 results with
an average of 4.7 and 4.3 errors correctly reported in the
first 50 expressions. All formulas struggle with duckling
and pandoc-4, due to the faulty expressions not being
touched by failing tests: A challenge to all spectrum-based
methods, and not specific to the functional context.

Applicability of Rules and Correlations. To investigate
the correlation, we applied the Pearson correlation coeffi-
cient after combining the spectrums across projects, shown
in fig. 11.

Some correlations verify our assumptions that we consid-
ered trivial, e.g. that type lengths correlate with the number
of subtypes. For most type-based rules this correlation is not
statistically significant, but more complex types tend to be
longer, have higher arity and order, and result more function
application. A second block we see are SBFT formulas from
literaturewithOchiai, Tarantula, DStar, andOptimalP. This is
mathematically plausible, as they are proportional to 𝑛𝑒𝑓 , the
number of failing tests for this expression, in their formulas
(see table 7). Most rules do not have a significant correlation
with each other, and, except for the two blocks, there are no
other visible trends. Although this seems underwhelming,
we want to stress that most rules do not correlate. For exam-
ple, rTFail and rTFailFreq do not correlate significantly

Figure 7. Decision Tree for Pandoc-5 (scaled features,
classic-rules)

within our data, implying that the execution frequency is
not directly proportional to the number of tests (analogue
to rTPass and rTPassFreq). This finding motivates us to
investigate formulas focusing on frequency, as they seem
more distinct from test failures than expected.
In general, the lack of correlation proofs some trivial as-

sumptions wrong, motivating further research and adjust-
ments to existing formulas. We expect imperative programs
to have similar patterns, but they can only be found as clear
in functional programs. Inferred type information at the
expression level is uncommon in other paradigms, and inves-
tigating correlations between types, constraints, arity and
faults is out of reach for most imperative languages.

RQ1.D: Rule Correlations
Most rules do not correlate according to the Pearson coeffi-
cient. Type rules and popular SBFL formulas form (mostly
non-significant) trends within the correlations.

Attributes of SBFL Models
Logistic & Linear Regression. In both logistic and lin-

ear regression for both scaled and unscaled features, the
resulting weights result in significant variance, indicating
overfitting. For example, many type rules differ in logistic
regression polarity despite being correlated (see RQ1.D).

Decision Trees. Decision trees required a class-balanced
fitting using an entropy measure to produce sufficient re-
sults. A visible trend is the reproduction of the SBFL formula
rankings as in fig. 7. Given the effectiveness of Ochiai, as
observed in RQ1.B, this is an understandable result.

For the larger programs (pandoc-6& pandoc-7), the trees
often resulted in configurations that lean left or right with
single expression branches. Tree pruning could not address
this form of overfitting, as the resulting pruned trees remain
with a high entropy.

Explainable conditions, such as if it is a leaf, use Ochiai;
otherwise, Tarantula, were unfortunately not observed. Trees
that were striking to the authors are those that use one of
the well-performing formulas (e.g., DStar), as root of the
tree, and then use a niche rule such as rHamming, rRogot1
or rNumGoldFails, which apply to very few locations.

This shortcoming of decision trees is known andmotivates
the use of a random forest ensemble.
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Genetic Algorithms. A key observation is that genetic
algorithms (GAs) faced convergence challenges with specific
programs: pandoc-4, duckling-4cfe88ea, duckling-ea8a4f6d,
and duckling-28ddc3bf, exhausting the maximum number
of generations allocated without achieving early termination.
The non-convergence co-occurs with the absence of touched
faults. Our educated guess is that a it is hard for randomly
generated weights (that is, the initial population) to produce
any correct ranking, and b for the untouched faults the
individuals who classify faults are uniquely picking single
attributes and the combination skews the weights again.
Individuals that rank faults are fragile, and mutation and
combination lose beneficial attributes, stopping the genetic
search to stagnation.

RQ2.A: Development of SBFL Models
Most models struggled with forms of overfitting. Linear
and logistic regression, as well as decision trees, strug-
gled with the sparse data. Genetic algorithms face issues
converging for programs with untouched faults.

Generalizability of SBFL Models
Classifiers. When investigating the classifiers (decision

trees, random forests, and logistic regression), an early find-
ing was that all three generalize better on scaled features.
An overview of the transfer performance of the classifiers
is shown in fig. 8. We see the trends in which classifiers are
grouped according to their false and true positives. Logistic
regression produces many true positives and false positives
(≈90% false positives). Put in perspective, for many data
points, a logistic regressor will give 100 faulty candidates,
of which nine will be true faults. Although this is likely
frustrating for developers, it can be suitable for tooling (see
section 5.1).
The best performance with good precision was achieved

by random forests using only SBFL formulas. On average, an
ensemble of formula-based decision trees reports five faults,
of which ≈2.5 will be true faults. This is a convincing rate for
actual usage, given that the reported numbers are averages;
for many programs, random forests (and decision trees) were
not reporting faults as they were not certain enough. This
leads to a low number of true positives, but upon author
inspection, most of the actually suggested faults were either
true faults or reasonably close.
Throughout the configurations, the classic SBFL formu-

las performed best in all classifiers. This is due to their
good performance on data points with high faults for which
the original formulas also performed well (pandoc-7). The
all-rules and cherries find fewer faults and produce
more false positives, but are better at predicting faults of the
most challenging data points pandoc-4, duckling-4cfe88ea
and duckling-ea8a4f6d. Depending on the goals, the logis-
tic regression with cherry-configuration is able to predict

faults that were not touched by failing tests, at the cost of a
high noise ratio.

Regressors. Across the board, the regressors performed
better on the unscaled data and primarily produced good
Top50-scores on the data points with faults covered by failing
tests. Due to poor performance, we present only examples of
regressors when compared to data points that have locations
touched by failing tests. Most regressors performed worse
than existing formulas, with the exception of genetic algo-
rithms seen in fig. 9 (and Top10 in appendix fig. 12). We see
that especially for the Top10 genetic search produces much
better averages than the formulas.

We stress that the averaged results only indicate the most
fruitful configuration - the results varied greatly from regres-
sor to regressor and per target data point. Thus, we want to
highlight two types of well-formed searches in fig. 10. The
orange bars indicate the achieved Top50-score, while the
blue frame indicates the maximum possible faults.

Figure 10a show the results when using the weights orig-
inating from the genetic search over HLS-2 using classic
formulas. We observe that this configuration is well suited
for a few programs and poor for others, but tops the individ-
ual formulas in mean-Top50. In general, we noticed that the
small programs from HLS produced some of the best regres-
sors, probably because the smaller number of entries resulted
in smaller weights less prone to overfitting. Figure 10b are
the results retrieved from fitting original rules (i.e., only
rules novel from this work) on duckling-28ddc3bf. The
resulting weights produce Top50 suggestions for all data
points except pandoc-6. This model has broad generalizabil-
ity across the investigated programs and is one of the drivers
of the good median metrics of search-based Top50 results.

When looking for such individual results, we saw similar
trends (uneven and even distributions of predictions) across
all regressors, with genetic search producing the most visible
trends due to the best predictions.
The best results were achieved for data points without

faults executed by failing tests in which three configurations
with a Top50 of 1, when fittingMLPs on pandoc-4, pandoc-5
and pandoc-3be256efb with the original rules. Such small
variations are in the realm of expected randomness andmight
not be worth further investigation.

RQ2.B: Applicability of Models
Classifiers performed better for scaled rules, whereas re-
gressors had difficulties with unscaled features. Logistic
regression produces high recall, but suffers from false pos-
itives. Random forests produced a good ratio of true to
false positives, but did not have a high recall. Of the re-
gressors, only genetic search beat the original formulas
in average and median, especially in Top10.
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Figure 8. Transfer Performance of Classifiers

Figure 9. Averaged Top50-score for genetic search

5 Discussion
Quality of formulas. In general, the existing SBFL for-

mulas performed well to the point that they might be used
in development. The achieved rankings beat some of the
existing research in Java, when the difference in granularity
is taken into account: most research focuses on statements
or blocks, but even the expression level seems reasonable.
As formulas do not require training data and are easily ap-
plicable, they form attractive targets for Haskell tooling, e.g.,
suggesting points of interest on a failing PR or highlighting
code of failing test runs. It might be possible to adapt existing
formulas to Haskell by introducing the frequency of execu-
tions instead of binary coverage through tests. Another way
to get a better result is the reduction of a spectrum, possibly
through filtering for AST properties or types.
However, the results of this work also show that there

are unique problems with programs whose faults are not
(directly) executed by failing tests. For such programs and
maybe other tasks (defect prediction, test generation), novel

(a) Top50 from HLS-2 with original rules

(b) Top50 from duckling-28ddc3bf with original rules

Figure 10. Example performance of promising searchmodels

rules based on types or AST structure can prove successful.
With functional programming often used for domain-specific
languages or code generation, we expect faults of this kind to
be more prominent than in imperative programs. We suggest
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that ensemble-style classifiers are used to utilize the best
of both worlds. For most bugs, the existing formulas seem
sufficient (or, one of them is), while unique features might
play a role heavily dependent on the programs structure.
Classifier fitted over multiple projects, also including bug-
free ones, are a promising next step.

Project & Test Structure. One recurring consideration
throughout all results was the strong dependency on the
project structure and the tests.
Duckling’s approach of unifying tests into a corpus of

examples makes it easy for contributors and allows for a
smoother execution against the generated code, while pos-
ing significant challenges for fault localization. Similarly,
many contributors (or users) to Pandoc report bugs by pro-
viding examples of failing documents that are translated
into a system-level regression test. This is very economi-
cal for the maintainers, but our results show that pandoc
programs with unit-level tests (pandoc-6 & pandoc-7) were
the most approachable for all algorithms and formulas. On
the other hand, the HLS data points make use of a great
degree of modularity; this is already visible, with both pro-
grams being plugins. This separation already leads to drasti-
cally smaller spectrums, and even more complicated issues
(hls-afac9b18 deleting lines on usage with other plugins)
were translatable into side-effect-free unit tests. We under-
stand that not every project can be modular to this extent,
but, especially given the size, number of contributors, and
changes in Pandoc and Duckling, fault localization can pay
off [5].
Closing our thoughts, we would like to stress that func-

tional programming is precisely the domain where excellent
modularity can be achieved. The greater the modularity, the
greater the applicability of tooling such as SBFL. For projects
that have a suitable test suite, even simple SBFL formulas
have immediate payoff.

5.1 Future Work
IDE integration. One future path would be to look at

the integration of spectrum-based fault localization into IDE
tools such as HLS, enabling users to get more out of their test
suite than just a pass/fail. Apart from technical challenges
in balancing performance and information, experiments can
identify user needs when engaging with such tooling.

Innocence. One way to extend this work is to introduce
the notion of innocence. Here, we focus on the suspiciousness
of a given statement, but in a typed setting, we can verify cer-
tain functions. This could involve functions that are verified
using tools such as SmallCheck, where we test every possible
invocation of a function of type, e.g. Bool -> a by applying
it to both True and False and checking that the output is
correct. It might be extended to other concepts, e.g. innocent
types or innocent modules from user-declaration. Innocent
locations can be excluded from the fault localization process.

6 Conclusion
This paper aims to extend spectrum-based fault localization
for Haskell and evaluate its applicability to real-world faults.
To achieve this, we implemented a Tasty ingredient that
allows the generation of spectrums with expression-level
granularity, including additional information on types and
identifiers. Making use of the richer information, we im-
plemented rules that capture the complexity of types, AST
structure, or identifiers and applied them to a total of 11
real-world programs. We used the rules to investigate the
attributes of the spectrums and to fit classifiers and regres-
sors. Our exploration uncovered unique kinds of failures:
faults that were not covered by failing tests. These failures
structured the results into two groups: for most programs,
the faults were covered by tests, and existing SBFL formulas
performed well and were only outperformed by regression
models that also make use of formulas as features. For the
faults not touched by failing tests, models based on addi-
tional information (e.g., types or identifiers) were necessary
to produce any correct prediction. However, these faults re-
main a challenging case and require further investigation.
The contributions of this work hopefully open up a broader
discussion of the applicability of SBFL for Haskell. The easy
adoption through a plugin allows developers and researchers
to experiment and provide information on user needs along-
side a greater variety of projects. Further insights in addition
to our initial investigation might also form a solid basis for
new Haskell-specialized formulas. Especially, the novel type
of failures requires approximation not directly based on test
failures, but exploits the project structure and types.

Why you should care about SBFL. One of the big selling
point of Haskell is the strong type systems and the resulting
compiler feedback. But even with strong types, errors can oc-
cur (see fig. 1) and require testing. While the compiler assists
the program, tools assist the programmer. Especially within
the boundaries of a strong type system in a lazy language, the
rich information of types and the lack of side effects allow for
better localization than imperative languages could dream
of. All efforts, whether from developers, fault localization
tools, tests, or compilers, can go hand in hand to provide
the best program quality with the least effort. Thanks to the
ongoing efforts of the Haskell Language Server project, it
is high time to introduce new software tooling for Haskell.
We hope that the insights provided by our work will provide
guidance when designing these tools.
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Appendix

Table 7. Overview of the rules in the rules-based system.
Rules Description

Test-type count

rTFail & rTPass Total number of failing tests involving this location

rPropFail & rPropPass Number of failing QuickCheck tests involving this location

rUnitFail & rUnitPass Number of failing unit tests involving this location

rGoldenFail & rGoldenPass Number of failing golden tests involving this location

rOtherTestFail & rOtherTestPass Number of other failing tests involving this location

rTFailFreq & rTPassFreq Sums the number of evaluations in failing and passing tests in-
volving this location.

Formulas from SBFL literature 𝑛𝑒𝑝 /𝑛𝑒𝑓 is the number of passing/failing tests the expression is
involved in, while 𝑛𝑡𝑝 /𝑛𝑡𝑓 is the total number of passes/fails.

rJaccard
𝑛𝑒𝑓

𝑛𝑒𝑓 +𝑛𝑡𝑓 +𝑛𝑒𝑝

rHamming 𝑛𝑒𝑓 + 𝑛𝑡𝑝

rOptimal
{

−1 𝑖 𝑓 𝑛𝑡𝑓 > 0
𝑛𝑡𝑝 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

rOptimalP 𝑛𝑒𝑓 −
𝑛𝑒𝑝

𝑛𝑒𝑝 +𝑛𝑡𝑝 +1

rTarantula

𝑛𝑒𝑓

𝑛𝑒𝑓 +𝑛𝑡𝑓
𝑛𝑒𝑓

𝑛𝑒𝑓 +𝑛𝑡𝑓
+ 𝑛𝑒𝑝

𝑛𝑒𝑝 +𝑛𝑡𝑝

rOchiai
𝑛𝑒𝑓√︃

(𝑛𝑒𝑓 +𝑛𝑡𝑓 ) (𝑛𝑒𝑓 +𝑛𝑒𝑝 )

rDStar k
(𝑛𝑒𝑓 )

𝑘

𝑛𝑡𝑓 +𝑛𝑒𝑝

rRogot1 1
2 (

𝑛𝑒𝑓

2𝑛𝑒𝑓 +𝑛𝑡𝑓 +𝑛𝑒𝑝
+ 𝑛𝑡𝑝

2𝑛𝑡𝑝 +𝑛𝑡𝑓 +𝑛𝑒𝑝
)

AST structure-based rules See table 3

Type-based formula rules See table 4
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Figure 11. Pearson Correlation MatrixTable 8. Test-coverage within gathered spectrums

Program Expressions covered
by failing Tests

Expressions untouched
by failing tests

Faulty Expressions not
covered by failing tests

Faulty Expressions covered
by failing tests

hls-2 205 64 1 14

hls-afac 35 87 0 17

duckling-4cfe88ea 1791 297705 4 0

duckling-328e59eb 1165 275942 0 26

duckling-ea8a4f6d 2541 286195 5 0

duckling-28ddc3bf 2256 260307 0 5

pandoc-4 419 90669 12 0

pandoc-5 238 60410 0 8
pandoc-6 2175 57203 34 5
pandoc-7 2235 58839 34 38
pandoc-3be256efb 623 88149 0 6
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Figure 12. Averaged Top10-score for genetic search
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