
1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

Functional Spectrums - Exploring Spectrum-Based
Fault Localization for Haskell

Anonymous Author(s)∗

Abstract
Fault localization plays an important role in debugging, one
technique thereof is spectrum-based fault localization, which
uses tests and program coverage to produce a spectrum of
locations involved in passing and failing tests. Despite its ex-
tensive application in Java, this technique remains underex-
plored within functional programming languages. This gap
underscores a critical challenge: adapting spectrum-based
fault localization to accommodate the unique characteris-
tics of functional paradigms. Addressing this challenge, we
evolve current spectrum-based approaches by extending the
spectrumswith types and AST structure.We introduce a rule-
based system tailored to capture more complex attributes of
the spectrum. Spectrums are generated using an ingredient
for the Tasty test framework, which allows easy adoption
and reproducibility. Through an empirical study involving
11 real-world programs, we meticulously investigate the
generated spectrums along with the effectiveness of the rule-
based system and their correlation to faults. Furthermore,
we employ a set of classifiers to evaluate the potential for
cross-program extrapolation of our findings. For most bugs,
conventional spectrum-based formulas perform promisingly
well in a functional context and are only outperformed by
classifiers that incorporate these formulas.

CCS Concepts: • Software and its engineering→ Func-
tional languages; Software testing and debugging.

Keywords: Laziness, Fault Localization, Functional Program-
ming, Haskell

ACM Reference Format:
Anonymous Author(s). 2024. Functional Spectrums - Exploring
Spectrum-Based Fault Localization for Haskell. In Proceedings of
Haskell Symposium (Haskell ’24).ACM,NewYork, NY, USA, 16 pages.
https://doi.org/10.1145/nnnnnnn.nnnnnnn

1 Introduction
Functional programming has earned a reputation for being
at the forefront of type and programming language research,
but we believe it can also be a champion of tooling and
software engineering practices.
It remains open what tooling functional programmers

really want, but tooling they need. Haskell is known for
innovating in more niche features like software transactional
memory and techniques like property-based testing. It has

Haskell ’24, September 02–07, 2024, Milan, Italy
2024. ACM ISBN 978-x-xxxx-xxxx-x/YY/MM
https://doi.org/10.1145/nnnnnnn.nnnnnnn

innovative tools like theHoogle search engine, but we believe
we can innovate further and introduce tools that would be
harder to develop for other paradigms.
Tools are quite important to software developlent. Ac-

cording to modern developer surveys, approximately 50%
of development is spent debugging, half of which is spent
fixing bugs [3]. An important part of the debugging process
is fault localization, i.e. determining which part of the pro-
gram is at fault, which can be assisted by specialized tools.
This challenge spans most software paradigms, including
functional programming [10, 17].

One way to assist the fault localization process is to intro-
duce automated tools [11, 24], for example, spectrum-based
fault localization (SBFL). A program spectrum is a matrix
where the rows represent test results and the columns rep-
resent code locations. Each entry indicates whether that
location was involved in the test or not, with an additional
column that indicates whether the test passed or failed. A
program spectrum is created by running individual tests and
collecting program coverage [27]; thus capturing different
aspects of the program by branching over the test suite. Pro-
gram spectrums have been successfully applied in imperative
languages, based on the premise that by comparing elements
involved in failing tests and those involved in passing tests,
we can deduce which location is at fault. However, they have
yet to become established in functional communities.

1.1 Example
Consider the function and properties in fig. 1.

1 foldInt :: (Int -> Int -> Int) -> Int -> [Int] -> Int
2 foldInt _ z [] = 0
3 foldInt f z (x:xs) = (foldInt f z xs) `f` x
4

5 prop_sum, prop_prod, prop_diff :: [Int] -> Bool
6 prop_sum xs = foldInt (+) xs 0 == sum xs
7 prop_prod xs = foldInt (*) xs 1 == product xs
8 prop_diff xs = foldInt (-) xs 0 == negate (sum xs)

Figure 1. A buggy program and associated properties

Here, we intended to implement a fold, but made a mis-
take: we accidentally wrote 0 instead of z in line 2. The
prop_sum and prop_diff touch all locations in the spec-
trum, but prop_prod only touches the base case, since Quick-
Check’s initial test is always [].

Running the properties for the program in fig. 1, produces
the spectrum in table 1. A standard spectrum consists of only
the tests, whether they pass or fail, and the locations involved
in each test. In this paper however, we produce augmented

1

https://doi.org/10.1145/nnnnnnn.nnnnnnn
https://doi.org/10.1145/nnnnnnn.nnnnnnn

111

112

113

114

115

116

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

Haskell ’24, September 02–07, 2024, Milan, Italy Anon.

166

167

168

169

170

171

172

173

174

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

216

217

218

219

220

Table 1. A spectrum for the code in fig. 1
name type result 2:18 3:31 3:35-36 3:22-37 3:43 3:22-43 2:1-3:43
type Int Int -> Int -> Int [Int] Int Int Int

identifier f xs x

sum QC True 100 2162 2255 2255 2255 2255 2355
prod QC False 1 0 0 0 0 0 1
diff QC True 100 2224 2319 2319 2319 2319 2419

spectrums. These augmented spectrums also include the
types of expressions and tests involved, the name of the
identifier, and the number of evaluations of this location in
the test. The notation 2:18 represents line 2 column 18, and
- indicates a range of characters.

Tarantula:

𝑛𝑒𝑓

𝑛𝑒𝑓 +𝑛𝑡𝑓
𝑛𝑒𝑓

𝑛𝑒𝑓 +𝑛𝑡𝑓
+ 𝑛𝑒𝑝

𝑛𝑒𝑝 +𝑛𝑡𝑝

Ochiai:
𝑛𝑒𝑓√︃

(𝑛𝑒𝑓 + 𝑛𝑡𝑓) (𝑛𝑒𝑓 + 𝑛𝑒𝑝)

Figure 2. Standard SBFL formulas. 𝑛𝑒𝑓 and 𝑛𝑒𝑝 are the num-
ber of times the expression 𝑒 is involved in a failing or passing
test respectivley, while 𝑛𝑡𝑓 and 𝑛𝑡𝑝 is how many total failing
and passing tests there were.

Using the formulas detailed in fig. 2 on the spectrum, we
can score the locations as detailed in fig. 3. Here, the most
suspect location is indeed the underlined 0 in 2:18: it is
involved in more failing tests than other locations, apart
from the definition of the foldInt that spans lines 2 and 3.

Location Ochiai Tarantula

2:18 0.577 0.5
2:1-3:43 0.577 0.5
3:31 0 0

Figure 3. Top 3 suspiciousness scores from classic SBFL
formulas, with the bug location in bold.

Although replacing the definition of foldInt is certainly
an option, the type information in the augmented spectrum
allows us to distinguish expressions from locations. Using
the type information to deduce that 2:18 is an expression,
we can break the tie and correctly point to 0 as the most
suspicious expression in the spectrum. Still, its not often
as clear which location is at fault. If we got the base case
correct but had written f x (foldInt f z xs) in line
3, we would have the traditional foldr instead of a flipped
foldr as presented here. Running the properties again, this

1 foldInt :: (Int -> Int -> Int) -> Int -> [Int] -> Int
2 foldInt _ z [] = z
3 foldInt f z (x:xs) = f x (foldInt f z xs)

Figure 4. The program from fig. 1, slightly modified.

accidental foldr produces the spectrum in table 2. Here, it
is not as clear which location is at fault: while prop_sum
and prop_prod pass, now prop_diff fails and touches all
except f in foldInt f z xs in line 3, since QuickCheck tests

the empty list and then singleton lists. This exonerates the
base case, but does not help us to distinguish the remaining
locations. As seen in fig. 5, formulas fall short in this case.

Location Ochiai Tarantula

2:18 0.577 0.5
3:24 0.577 0.5
3:37 0.577 0.5

3:39-40 0.577 0.5
3:26-41 0.577 0.5
3:22-41 0.577 0.5
2:1-3:41 0.577 0.5
3:35 0.0 0.0

Figure 5. Classic SBFL formula scores (bug location in bold).

While this would be a challenge to traditional SBFL formu-
las, our rule-based approach allows us to distinguish these
cases, by inspecting the AST structure, types, and identi-
fiers. The rule-based approach is detailed further in sec-
tion 3.2, but for this example, we could proceed as follows:
we can filter out the non-expression by limiting ourselves
to only those locations that have a type. In this case, we see
that the columns for the remaining faulty expressions look
the same, except for 2:18. We then sort by the AST-based
rTFailFreqDiffParent rule (see section 3.2), which assigns
a value of 0.71 to z in 2:18, 2.29 to f x (foldInt f z xs)
in 3:22-41, and 3 to all the others: most locations are evalu-
ated alongside their parent, but 3:22-41 and 2:18 are not
always evaluated with their parent (2:1-3:41). As the test
is a property and properties test the base case first, a failure
for the empty list would result in fewer evaluations, similar
to what we saw in table 1. With that, we can rank 3:22-41
as the most suspicious. This motivates us to do a detailed
analysis to shed light on which attributes are important.

1.2 Contributions
In this paper, we apply spectrums and existing suspicious-
ness scoring algorithms to Haskell and enrich it with unique,
novel features: We use Haskell Program Coverage (HPC)
instrumentation to determine whether an expression was
touched during a test, but also to extract how often the lo-
cation was evaluated. We note the test-framework (Quick-
Check, Hunit, etc.) for later progressing, and capture the
type, constraints, and identifiers of locations that correspond
to expressions within the spectrum, forming a richer spec-
trum than existing literature. We aim to cover many Haskell-
specific attributes of test-cases and programs by these changes.

2

221

222

223

224

225

226

227

228

229

230

231

232

233

234

235

236

237

238

239

240

241

242

243

244

245

246

247

248

249

250

251

252

253

254

255

256

257

258

259

260

261

262

263

264

265

266

267

268

269

270

271

272

273

274

275

Functional Spectrums for Fault Localization Haskell ’24, September 02–07, 2024, Milan, Italy

276

277

278

279

280

281

282

283

284

285

286

287

288

289

290

291

292

293

294

295

296

297

298

299

300

301

302

303

304

305

306

307

308

309

310

311

312

313

314

315

316

317

318

319

320

321

322

323

324

325

326

327

328

329

330

Table 2. A spectrum for the code in fig. 1, with a fixed based case but f x (foldInt f z xs) in line 3
name type result 2:18 3:24 3:35 3:37 3:39-40 3:26-41 3:22-41 2:1-3:41
type Int Int Int -> Int -> Int Int [Int] Int Int

identifier z x f z xs

sum QC True 100 2654 2560 2654 2654 2654 2654 2754
prod QC True 100 2604 2509 2604 2604 2604 2604 2704
diff QC False 7 4 0 4 4 4 4 11

We provide the tool for spectrum generation as an ingredient1
for the popular Tasty test framework.
To explore the spectras and generate new findings, we

implement a rule-based approach to merge novel features
and existing approaches. The targets for rules are (1) test
attributes (test types, executions, frequency), (2) program
attributes (AST structure), (3) existing SBFL formulas, and (4)
type-based complexity measures (constraints, arity, order).

The overall goal is to see whether the additional rules be-
yond existing literature improve fault localization for Haskell
programs. To rank the locations for their suspiciousness, we
concatenate the rule results into a vector and apply simple
machine learning (ML) algorithms such as linear regression,
decision trees, and (shallow) neural networks. We chose sim-
ple predictors to maintain explainability and ease of compar-
ison. For instance, decision trees provide a transparent view
into the rules most effective at isolating specific bugs, while
regression models capture the correlations between rule at-
tributes and the presence of faults. They directly correlate
with different features and form an insight themselves.

Rather than striving for improved outcomes by selectively
interpreting metrics or meta-tuning classifiers, our goal is
to offer insights and trends encompassing both successful
and unsuccessful techniques. We provide an easy-to-adapt
tool for practitioners and researchers to extract rich spectra.
Popular open-source projects are used to verify the feasibility
of spectrum extraction. Real-world bugs are analyzed in
detail by formulating rules that capture spectrum attributes.
Known SBFL formulas are re-applied and investigated for
suitability, and some simple ML algorithms are tested with
rule-based vectors.

The total overview of the pipeline is seen in Figure 6. The
novel elements and contributions are marked as bright-blue.

Research Questions. We first investigate the spectrums
and look what attributes distinguish them from their non-
faulty counterparts.

RQ1.A: Spectrums of functional Programs
What attributes significantly differentiate faulty and non-
faulty expressions within spectrums?

Before adaptations, it is worth looking at how existing
research performs for typed functional programs.We thus ap-
ply common spectrum-based formulas from literature, sum-
marized in table 7 in the appendix.
1currently anonymized for peer-review

Figure 6. Overview of the fault localization Pipeline

RQ1.B: SBFL Formulas for functional Programs
Howwell do existing SBFL formulas perform for the given
Haskell dataset?

We aim to capture certain attributes of spectrums and
their expressions through rules. After implementation, it
remains to see if they are applicable. RQ1.C investigates the
characteristics of the rules when applied to the spectrum:

RQ1.C: Applicability of Spectrum-Based Rules
What are the most prominent rules triggered by faulty
expressions?

As a final subject of investigating the underlying programs,
we analyze correlations between the rules and formulas.

RQ1.D: Correlation of Spectrum-Rules
Are there significant correlations between the rules for
faulty expressions?

Based on the original data investigation and rules, we
apply a set of different simple classifiers and regressors to the
data. Due to the exploratory nature, we focus on explainable
models and investigate their attributes after fitting.

RQ2.A: Attributes of simple SBFL Models
When fitted to a data point, what rules were the most
important for the different models? Are there reoccurring
patterns and weights?

A common use of a model is to diagnose faults in (unseen)
data, which makes debugging more effective. With RQ2.B we
want to see how well the models perform on the programs

3

331

332

333

334

335

336

337

338

339

340

341

342

343

344

345

346

347

348

349

350

351

352

353

354

355

356

357

358

359

360

361

362

363

364

365

366

367

368

369

370

371

372

373

374

375

376

377

378

379

380

381

382

383

384

385

Haskell ’24, September 02–07, 2024, Milan, Italy Anon.

386

387

388

389

390

391

392

393

394

395

396

397

398

399

400

401

402

403

404

405

406

407

408

409

410

411

412

413

414

415

416

417

418

419

420

421

422

423

424

425

426

427

428

429

430

431

432

433

434

435

436

437

438

439

440

that they are not fitted for, and if there are recurring patterns,
successes, and challenges among them:

RQ2.B: Generalization of SBFL Models
How well do the fitted models perform on programs and
faults outside of their training data?

In summary, this research aims to a analyze a sample of
real world faults and b explore directions for predictors
that perform better than existing formulas.

2 Background and Related Work
Spectrum-based Fault Localization. Spectrum-based

fault localization (SBFL) was developed as a technique to
cover well-testable issues related to the year 2000 problem
[27], and is considered one of the most prominent due to its
efficiency and effectiveness [29]. After defining a failing test
that triggers the Y2k problem of an application, the program
tests were executed in order, and their coveragewas recorded.
Under the assumption that there are (passing) tests covering
expected behavior, the issue must originate in statements
covered by failing tests without being in passing tests.
The Y2K problem consists of straightforward fixes, and

thus it is difficult to transfer the techniques developed there
to more complex issues. Nevertheless, the idea of collecting
per-test coverage to narrow down suspicious statements
formed the core of modern SBFL: from the initial concept
of intersection, many techniques emerged that use formulas
[11, 12, 16, 32] to assign suspiciousness scores to different
parts of the program. With differences in the details, all
formulas take into account how often a given statement was
touched by failing and passing tests, in addition to global
attributes of the spectrum (e.g., total number of failing tests).
The result of the formulas is used to produce a ranking of
(all) statements and report the most suspicious locations.

An important piece of work from which we draw is from
Naish et al. [22] which discusses the mathematical attributes
of spectrum-based formulas. In addition to introducing two
new formulas, they prove that some formulas must result in
the same ranking (equivalence classes). Within this work, we
aim to implement at least one formula from each identified
equivalence class.

Other Fault Localization efforts for functional pro-
gramming. Fault localization in a functional setting has
been explored in Liquid Haskell [30], using refinement
types, a type system augmented with logical predicates.
They collect constraints and localize faults bymapping amin-
imal set of atomic unsatisfiable type constraints to likely bug
locations. The work relies on a more powerful type system
than Haskell has, namely liquid types, which localize (and
repair) errors on the type level. The Liquid Haskell approach
requires precise modeling of the expected system-behavior
at the type level, which often means giving up type-inference

In this work, we target programs with existing test suites,
and enable developers to get more out of previous testing
efforts. Using liquid types, a form of test generation can
form supplementary work similar to test generation efforts
in program repair.

2.1 Related Work
Li et al. Comparable work on spectrum-based fault lo-

calization for Haskell originates from Li et al. [14]. They
collect open source bugs and apply existing SBFL formulas
on an expression-level spectrum. To improve generalizabil-
ity and introduce an ML approach, the programs were also
mutated to extend their data set. Although they publish the
dataset which we reuse, the original code is not available.
Li et al. have similar goals in introducing SBFL for Haskell,
but many of the details differ. On a more fundamental level,
our spectrums extend previous work with unique attributes
of types, tests, and identifiers. We introduce rules that ex-
tend the existing literature to capture more concepts than
SBFL formulas currently can. Their approach includes data
augmentation, which forms a great venue to synthesize the
efforts of both works in future research.

HaskellFL. implements the Ochiai and Tarantula algo-
rithms for Haskell code [31]. They develop a custom com-
piler that compiles the program into SKI-combinators for
evaluation, to determine the lines involved in a fault. As
they do not integrate with HPC or GHC, an application for
real-world programs proves difficult, and no evaluation on
large programs is provided.

3 Implementation & Experiment Setup
3.1 Spectrum Generation
We introduce a tasty-spectrum package which adds an
ingredient to the Tasty test framework that captures cov-
erage when tests are run and generates a spectrum. Tasty-
Ingredients are a modular way to implement plugins for
Tasty to add additional behavior around tests such as re-
running, timeouts, or, in this case, data extraction.
To generate spectrums, we use the instrumentation pro-

vided by Haskell Program Coverage (HPC) and programs
compiled with the -fhpc flag. This generates .mix files that
allow HPC to connect the indices it produces to the source
locations in the modules. Our implementation also includes
a GHC source plugin, which integrates with the compiler
and extracts type and identifier information from modules
during compilation and generates .types files.

GHC Source Plugins. GHC allows users to define source
plugins, which are run at the end of various stages of compila-
tion, including parsing, type-checking, and renaming. These
plugins allow the user to modify and interact with the source
code after each stage. In the tasty-spectrum package, we
define a plugin that operates at the end of the type-checking

4

441

442

443

444

445

446

447

448

449

450

451

452

453

454

455

456

457

458

459

460

461

462

463

464

465

466

467

468

469

470

471

472

473

474

475

476

477

478

479

480

481

482

483

484

485

486

487

488

489

490

491

492

493

494

495

Functional Spectrums for Fault Localization Haskell ’24, September 02–07, 2024, Milan, Italy

496

497

498

499

500

501

502

503

504

505

506

507

508

509

510

511

512

513

514

515

516

517

518

519

520

521

522

523

524

525

526

527

528

529

530

531

532

533

534

535

536

537

538

539

540

541

542

543

544

545

546

547

548

549

550

stage, where we traverse the type-checked expressions, and
note their types in the .types file. The .types files are saved
alongside the .mix files and later combined with the .mix
information during spectrum generation.

Haskell Program Coverage (HPC). HPC instrumenta-
tion is integrated into GHC, and is based on maintaining an
array that counts executions for each source location (which
corresponds to expressions) in the module during runtime.
Whenever an expression is evaluated, this triggers a “bump”
in the array, allowing HPC to track the number of times each
expression was evaluated in the module. This array allows
access, manipulation and re-initialization at runtime.

Spectrums are generated by running the test suite. As the
code has been compiled with the -fhpc flag, the RTS will
keep the Tix array in memory. Before running each test, we
reset the HPC state. After each test, we read the current state
of HPC, and track which expressions were evaluated.

After running all tests, the Tix array for each test is com-
bined with the module structure from the Mix files and the
type/identifier information from the .types files to produce
a type-augmented spectrum as a .csv file. To compress the
data, we only include locations that are involved in any of
the tests, excluding those that have zero evaluations across
the test suite.

3.2 Rules
Fault localization commonly ranks locations based on their
suspiciousness. To achieve this, the information in the spec-
trum is quantified and turned into a score. This is tradition-
ally done using formulas that depend on the number of times
a location is involved in passing or failing tests, 𝑛𝑒𝑝 and 𝑛𝑒𝑓
respectively, and the number of total passing and failing
tests, 𝑛𝑡𝑝 and 𝑛𝑡𝑓 . In our analysis we include these classic
formulas, but also quantify other elements of the augmented
spectrum, aiming to find correlations with faults.

• Test-type count the number of tests, passing or failing,
that this location is involved in.

• SBFL-Formulas apply existing formulas from previous
literature; the rule output is the calculated value of
the formula.

• AST structure-based rules use information based on the
distance from a failing location or whether a parent
or sibling was executed often.

• Type-based rules are based on analysis of the available
types and constraints of a location.

• Meta-rules operate on the results of the previous, per-
module, rules and supplement the data with further
analysis. These include the quantile rules and the rules
that count how often types, component types, and
identifiers appear in failing tests.

Table 4 provides an overview of the type-based rules.
We want to further motivate some of the rules presented

in table 7. One general notion is that properties are stronger

than regular unit tests, as they cover a wider range of input
values and have logic beyond an assert. It makes sense to
rate an expression that is in many passing properties as less
suspicious. In a similar, less algorithmic viewpoint, golden
tests, i.e. tests that use output comparison, are often written
after users report a bug. Thus, it could make sense to rate
golden test failures as more suspicious, as they often capture
failing behavior, contrary to properties that often test posi-
tive program paths. Taking this into account, there is no one
test better than the others - but there might be patterns that
we only find when inspecting them separately.

Table 3. Rules based on AST-based behavior
rASTLeaf Counts the distance of this node to

the nearest leaf.

rFailUniqueBranch Times this location is touched by fail-
ing test that touches none of its sib-
ling expressions.

rFailFreqDiffParent Ratio of evaluations compared to
parent-evaluations.

rDistToFailure Distance to a location touched in a
failing test, by counting links to a
common parent.

AST rules (seen in table 3 are based on existing research
on active and algorithmic debugging [4, 8, 18]. They aim
to capture differences in executions relative to parents and
neighbors and reflect control-structures and program flow.
With the group of type rules in table 4, we aim to proxy

the complexity of an expression and its context. We expect
longer types to indicate a more complex process; especially
higher-order functions are a unique case of complexity that is
well represented at the type level. rNumSubTypeFails aims
to connect types seen in failing locations with seemingly
un-connected locations — the rationale being that concepts
in the program are expressed as types, and there can be a
failure in the concept. rTypeArity and rTypePrimitives
allow us to identify correlations of faults with parts of a
type and form basis of analysis, e.g. if faults occur in basic
elements or complex compositions.
Unlike SBFL formulas, our novel rules are not intended

as ranking algorithms, but rather as intermediate results for
analysis, model features, and tie breaking (e.g. in table 2).

3.3 Data
We draw data from two Haskell fault datasets, HasBugs [1]
and HaFla [14]. Both datasets provide a similar granularity
of faults originating from projects with known faults (based
on issues and PRs) whose fault-fixing commits include a
test. These tests were extracted to produce a faulty but tested
version with a failing test suite. We determine faulty expres-
sions as all expressions that are completely within faulty
lines, extracted from the git-difference.

5

551

552

553

554

555

556

557

558

559

560

561

562

563

564

565

566

567

568

569

570

571

572

573

574

575

576

577

578

579

580

581

582

583

584

585

586

587

588

589

590

591

592

593

594

595

596

597

598

599

600

601

602

603

604

605

Haskell ’24, September 02–07, 2024, Milan, Italy Anon.

606

607

608

609

610

611

612

613

614

615

616

617

618

619

620

621

622

623

624

625

626

627

628

629

630

631

632

633

634

635

636

637

638

639

640

641

642

643

644

645

646

647

648

649

650

651

652

653

654

655

656

657

658

659

660

Table 4. Rules based on the expressions type
rTypeArity &
rTypeConstraints

Number of arguments and constraints the
function has.

rTypeArrows Number of arrows (->) in the type

rTypeFunArgs Numbers of parentheses in the type to
quantify how many function arguments
there are, and in turn whether it is a
higher-order function or not.

rTypeOrder Counts the number of type applications
in the type, such as Maybe a or [[a]]

rTypePrimitives Number of primitives, i.e. String or Int.

rTypeSubTypes Counts the number of types in the type,
i.e., unfolds all constructors and applica-
tions.

rTypeLength Number of Characters of the Type, when
represented as String.

rNumSubTypeFails Number of times types which appear in
this type are involved in a location in-
volved in a failing test.

A subset of the data was chosen to produce the spectrums
that met the required versions of Cabal, tasty (>v1.0), and
GHC (>= 8.6). Other limitations excluded projects like Pure-
script (many of the tests run against compiled Javascript) or
Cabal (all bug-asserting tests are package-level tests outside
the tasty test suite). This results in a total of 11 programs2
from 3 projects - Pandoc, Duckling and anHLS-plugin. An
overview of the data points used is presented in table 5.

Pandoc is a document converter and, outside of language-
specific tooling (GHC, Cabal, HLS, etc.), the biggest Haskell
project with over 50k lines of code. The general flow of
conversion consists of three steps: a reader, an internal rep-
resentation, and a writer. Most bug reports and issues are
based on user-perceived misbehavior, which is commonly
captured with a unit or golden test.

HLS is a joint community effort of Haskellers to provide
the backbone of a modern Haskell IDE. Most of it is centered
on providing a language server in typescript style for the
popular Visual Studio Code. Apart from a base framework,
many functions are provided as plugins to cover linting, type
suggestions, suggested imports, and other features.
Duckling is an open-source Facebook project that ex-

tracts structured entities (times, dates, weights, etc.) from
texts. The general business logic consists of regex-based
rules that are applied in a fine-to-coarse fashion The test
suite consists of a domain-specific corpus with examples and
broad tests that run all examples within a corpus. Generally,
the corpus is structured per module, which is why the duck-
ling data points only show one test failure, despite multiple
examples being added to a corpus.

29 from HasBugs, two from HaFla

Comparison with Defects4J - Comparing the spectra
between paradigms is challenging, but to approximate, we
consult some data from Defects4J [13]. We draw our data
from a public repository shared by René Just3 that provides
statistics from applying GZoltar [28] to a subset of 395 bugs
from Defects4J.

The Defects4J bugs inspected have a mean Source lines of
code(SLOC)[23]4 of 57.7k and a median of 62.5k. The mean
number of tests in Defects4J is 1439, with a median of 202,
with an average of 2 failing tests. Under the assumption
that most of the SLOCs represent line-level statements, the
resulting spectrums will have a comparable number of el-
ements. The we approximate faulty SLOC for Defects4J as
an average of 2.56, based on the lines removed by the patch.
In conclusion, the programs and bugs used in this work are
comparable in size to Defects4J.

3.4 Experimental Setup
Based on the fault fixing commits of a data point, we revert
the source code patch while keeping the changes to the test
code, observing a test failure during cabal test. At this
stage, we also distinguish noisy test failures as mentioned in
table 5, marking tests that fail before and after the changes
as noisy. As the next step, the cabal file is altered to include
spectrum generation and coverage, following the descrip-
tion in section 3.1 These result files form the basis of a data
analysis, done in Python.

RQ1 is answered by investigating the results of their trig-
gered rules. Many of the spectrum attributes are directly
captured in rules (e.g., rTFail corresponds to was touched
by a failing test), and thus facilitate the analysis of distribu-
tions and proportions.

The primarymetric considered for ranking the expressions
is the Top-X-metric [9]. Within TopX, the recommended el-
ements are sorted by their suspiciousness, and the correct
classifications (truly faulty expressions) within the first X are
counted. For this work, we considered the Top10, Top50 and
Top100, following previous literature.

Another common metric is EXAM [26], assuming that the
user follows every recommendation in order until the real
fault(s) are fixed. The index of the first correct fault is used
to calculate the ratio of the inspected (total) program, with
the exam score expressing how many locations can be skipped
when following the recommendations? The EXAM score is
proportional to the mean reciprocal rank, another metric
commonly reported for FL. For this work, we discarded MRR
and EXAM, as we work with different granularity due to our
expression level spectrum: when introduced in 2003, EXAM
was targeting block-level spectrums, but the sheer difference
in the quantity of mostly (benign) expressions would draw

3https://bitbucket.org/rjust/fault-localization-data/src/master/
4SLOC are lines of code, after removing whitespace and comments.

6

661

662

663

664

665

666

667

668

669

670

671

672

673

674

675

676

677

678

679

680

681

682

683

684

685

686

687

688

689

690

691

692

693

694

695

696

697

698

699

700

701

702

703

704

705

706

707

708

709

710

711

712

713

714

715

Functional Spectrums for Fault Localization Haskell ’24, September 02–07, 2024, Milan, Italy

716

717

718

719

720

721

722

723

724

725

726

727

728

729

730

731

732

733

734

735

736

737

738

739

740

741

742

743

744

745

746

747

748

749

750

751

752

753

754

755

756

757

758

759

760

761

762

763

764

765

766

767

768

769

770

Table 5. Overview of the used data points
Data
Point

Issue Faulty
LOC

Faulty Ex-
pressions

Total Ex-
pressions

Failing
Tests

Noisy Test-
Failures

Total
Tests

pandoc-
3be256efb

Wrong application of ’Big Note’ highlighting when converting
to LATEX. Reordering necessary.

1 6 88k 6 0 3254

pandoc-4 Failure converting combined code and bold text to LATEX. 3 12 91k 1 1 3056

pandoc-5 Misinterpretation of code blocks when converting to ROFF MS.
Requires escaping.

1 8 61k 2 6 2400

pandoc-6 Misconverting code blocks starting with (1) into enumerations. 5 39 59k 10 13 2365

pandoc-7 Empty multi-cells not picked up when reading LATEX. 27 72 61k 3 7 2415

hls-2 Issue accounting for relative location "./" instead of expected "." 2 15 269 1 0 6

hls-
afac9b18

HLS-Plugins can reformat code, Stylish Haskell was removing
the last line of files regardless of whether they had content.

1 17 122 2 0 13

duckling -
ea8a4f6d

Wrong pronomina for German million. Regex adjustment. 1 5 288k 1 0 364

duckling -
4cfe88ea

Missing combined durations cases (e.g "2 hours and 20 min-
utes")

18 4 260k 1 1 342

duckling -
28ddc3bf

Wrong parsing of 1.000,00 for Dutch. 1 5 299k 1 0 346

duckling -
328e59eb

Missing cases for weights (and combinators) in Portuguese
language.

19 26 277k 1 1 360

a highly beneficial picture of our approach. Therefore, for
ranking evaluations, we focus on the TopX metrics [33].

RQ2 is investigated by training classifiers and regressors
on the result files. Namely we implemented decision
trees, random forests, linear-& logistic regression
and Multilayer Regressors from SciKit [25]. At last, we
considered a genetic algorithm using Pymoo [2] for an evo-
lutionary search of regressor weights.
To separate the effects of the new rules from existing

rules, we assert a total of four configurations: all, classic
(existing sbfl formulas), original (only novel rules added by
this work) and cherries (a handpicked set of rules and for-
mulas). To account for different value ranges, we re-run all
experiments with min-max-scaling, mapping all features
to values between 0 and 1. In the remainder of the paper, this
is represented by the terms scaled (min-max scaling applied)
and unscaled.

Fitting the binary classifiers (decision tree, random forest,
logistic regression) targets locations to be faulty or not faulty.
Regressors are trained to assign faulty locations with a sus-
piciousness of 1 while other locations have a suspiciousness
of 0. In the remainder of the paper models are named after
their training data, e.g. Pandoc-3 model. For persisting trends
of a single project, pandoc models refers to all models based
on pandoc programs.

GA-based regression. . GAs utilize a custom fitness func-
tion to optimize the ranking of the first reported faulty lo-
cations, effectively optimizing on TopX. For GAs, we set the

population to 200 individuals and use Latin Hypercube Sam-
pling [19] to generate the initial population. The population
is then evolved trough subsequent generations, by using bi-
nary tournament selection [20], for selecting the solutions
(regression weights) for reproduction based on their fitness.
Simulated Binary Crossover [7] SBX is used to recombine the
selected solutions, and polynomial mutation [6] (PM) is used
to introduce diversity to the population. We opt for these
genetic operators and their recommended parameters values
(i.e., SBX with index 𝜂𝑐 = 30, PM with index 𝜂𝑚 = 20 and
probability 𝑝𝑚 = 1/𝑛, with 𝑛 being the number of regression
weights), as they are known to be effective in solving con-
tinuous optimization problems [6]. GAs are set to run for
2000 generations or terminate early if no improvement in the
fitness function is observed for 100 generations. The solution
weights in the final population with the best value of the
fitness function is used as the final GA-based regression.

Regressors are evaluated on the resulting TopX, while for
classifiers, true and false positives are evaluated. A global
seed was used to account for inherent randomness.

4 Results
Attributes of Spectrums. The created spectrums range

in size from 25Kb (HLS), 200 MB (duckling) to up to 500 MB
(Pandoc). Spectrum generation is not a costly addition to the
runtime of tests, but compilation time of projects is longer
as the -fhpc flag is required.
Table 8 groups the expressions into those touched by

failing tests and those that are not. This allows for shrink-
ing the spectrum, assuming that statements without failing

7

771

772

773

774

775

776

777

778

779

780

781

782

783

784

785

786

787

788

789

790

791

792

793

794

795

796

797

798

799

800

801

802

803

804

805

806

807

808

809

810

811

812

813

814

815

816

817

818

819

820

821

822

823

824

825

Haskell ’24, September 02–07, 2024, Milan, Italy Anon.

826

827

828

829

830

831

832

833

834

835

836

837

838

839

840

841

842

843

844

845

846

847

848

849

850

851

852

853

854

855

856

857

858

859

860

861

862

863

864

865

866

867

868

869

870

871

872

873

874

875

876

877

878

879

880

tests are innocent. When organized in this way, we see that
duckling-4cfe88ea, duckling-ea8a4f6d, duckling-1dac46a8
and pandoc-4 do not have faults covered by the tests.
The authors double-checked the test suite, and for duck-

ling, the correct (and expected) corpus tests were failing. We
suspect that the tests do not run against the original source,
but generated code. The generated code is also faulty but is
not the origin of the issue, as fixed in the commit. Some of the
duckling datapoints, e.g. duckling-328e59eb have faults
covered by failing tests. The fix for duckling-328e59eb is
more than the adjustment of a regex, and the changes to the
structure are successfully tested and represented in the spec-
trum. For pandoc-4 there are faulty locations on a reader
that need changes in the data format. The relevant golden
test runs with a compiled binary of pandoc (unlike the
other pandoc data points) that is invoked by tasty, which is
not collected in project coverage. Thus, we have a failing
test suite, but the touched expressions originate only from
noisy test failures.

The existence of faults that are not directly covered poses
a challenge for this work and a novel aspect of fault localiza-
tion. Stemming from real projects, the tests are realistic and
express community efforts. Although tests cover bugs se-
mantically, it does not cover the faulty code and require new
spectrum techniques. Due to the common usage of Haskell
for domain-specific languages, parsers, and code generation
tooling, we expect these types of faults to be more common
in functional paradigms than in other languages.

On average, 63.7% of faults are in AST leaves, while 50.5%
of expressions are leaves. For duckling, most changes were
adjustments to a regex (AST-Leaf) and their wrappers (non-
leaf) or required the introduction of a new rule. This re-
sults in even distribution of faults in leaves and non-leaves
for duckling. Within Pandoc, many faults revolved around
combinators and parsers, which involve many higher-order
functions. In particular, the program flow in a parser monad
produces many non-leaf faulty locations. The combinators
(<$>, <|>, etc.) and the patterns (many1Char, noneOf, etc.)
are all non-leaf nodes as they require arguments. Due to this
structure, the faults in the pandoc programs are proportion-
ally more in non-leaves than leaves.
Most faulty expressions are typed. Usually, one or two

faulty locations are untyped, which is a special case of am-
biguity that occurs in typing: these are not expressions, but
rather bindings, e.g. x = a. Here, x and a will have the same
type, but the binding x = a does not have a type.
We see no striking trends in the types of faulty expres-

sions; the most common types are primitives such as Text or
UInt, which are also common in non-faulty expressions. The
only exceptional types are monadic parsers in pandoc-6 and
pandoc-7. The use of monads and the higher-order opera-
tors involved is also a reason for the high number of faulty
expressions for these data points, as they imply an increased
number of function applications per line of code.

Although most expressions are typed, only a few repre-
sent an identifier. Less than half of the faulty expressions
correspond to an identifier, and 4 data points do not have
any faulty expressions that correspond to an identifier. The
identifiers encountered match the project vocabulary (e.g.,
parseMultiCell in pandoc-7) with no trend of shorter iden-
tifiers being more faulty. This diverges from existing re-
search’s focus on off-by-one errors [21] or issues in predicates
[15], which also focus on elements with identifiers.

RQ1.A: Attributes of Spectrums
3 Data points (pandoc-4,duckling-4cfe88ea &
duckling-ea8a4f6d) do not have faulty expressions cov-
ered by a failing test, due to code-generation (duckling)
and the test-suite utilizing binaries (pandoc). Two-thirds
of expressions are AST-leaves, whereas about half the
faults are AST-leaves. Almost all faulty expressions have
a type, but identifiers are rare.

Existing SBFL-Formulas. Table 6 shows the Top50 re-
sults when applying existing formulas and sorting the state-
ments by their resulting score. We focus on Top50, as Top10
struggledwith expression-level granularity and Top100 showed
the same trends at a bigger scale. For readability, we reduced
table 6 to the best performing formulas.
Ochiai is the formula that performs best with our data,

followed by DStar. Ochiai is the only formula with a median
Top50 above zero, implying that the other formulas have
not found faults for more than half of the data points. We
expect that Ochiai performs best as it applies the square root
in its denominator, which scales better for large number of
expressions and tests. Ochiai, DStar, and Optimal also do not
use 𝑛𝑡𝑝 (number of total passing tests), which is relatively
high for most programs and disproportionate to the number
of failing tests.

The best average scores are achieved by the strong perfor-
mance of some formulas on pandoc-6 and HLS-afac9b18.
Our educated guess is that pandoc-6 has a large number of
failing tests that exactly distinguish the faulty from the cor-
rect cases. HLS-afac9b18 has a much more favorable ratio
of faulty expressions to expressions, and the newly added
tests primarily invoke the affected faulty statements. Thus,
these two data points play into the strengths of formulas due
to their test quality.

The data points duckling-4cfe88ea, duckling-ea8a4f6d,
pandoc-4 and pandoc-3be256efb did not result in Top50
for any of the existing formulas. Again, we suggest that this
is mostly due to the test suite and its attributes highlighted
in the previous subsection. Without faulty expressions that
are covered by failing tests, most formulas result in a suspi-
ciousness of 0. Furthermore, formulas that include passing
tests also struggle with the duckling data point, since most
expressions are covered by only one or a few passing tests.

8

881

882

883

884

885

886

887

888

889

890

891

892

893

894

895

896

897

898

899

900

901

902

903

904

905

906

907

908

909

910

911

912

913

914

915

916

917

918

919

920

921

922

923

924

925

926

927

928

929

930

931

932

933

934

935

Functional Spectrums for Fault Localization Haskell ’24, September 02–07, 2024, Milan, Italy

936

937

938

939

940

941

942

943

944

945

946

947

948

949

950

951

952

953

954

955

956

957

958

959

960

961

962

963

964

965

966

967

968

969

970

971

972

973

974

975

976

977

978

979

980

981

982

983

984

985

986

987

988

989

990

Table 6. Formula Top50 Results
Program Faults Tarantula Ochiai DStar 3 OptimalP
hls-2 15 2 2 2 2
hls-
afac9b18

17 17 17 17 17

duckling-
4cfe88ea

4 0 0 0 0

duckling-
328e59eb

26 1 1 4 0

duckling-
ea8a4f6d

5 0 0 0 0

duckling-
28ddc3bf

5 0 0 0 0

pandoc-4 12 0 0 0 0
pandoc-5 8 8 8 0 0
pandoc-6 39 0 21 21 25
pandoc-7 72 3 3 3 0
pandoc-
3be256efb

6 0 0 0 0

mean 17 2.8 4.7 4.3 4
median 12 0 1 0 0

These few tests are rich as they contain multiple examples,
but do not take advantage of the considered formulas.

The overall applicability of the formulas is quite high. The
small data points of HLS are especially well predictable with
formulas, motivating applications for script-sized programs.
For duckling, organizing tests into a corpus in combination
with code generation makes formulas unsuitable.

RQ1.B: Existing SBFL Formulas
Ochiai and DStar produce the best Top50 results with
an average of 4.7 and 4.3 errors correctly reported in the
first 50 expressions. All formulas struggle with duckling
and pandoc-4, due to the faulty expressions not being
touched by failing tests: A challenge to all spectrum-based
methods, and not specific to the functional context.

Applicability of Rules and Correlations. To investigate
the correlation, we applied the Pearson correlation coeffi-
cient after combining the spectrums across projects, shown
in fig. 11.

Some correlations verify our assumptions that we consid-
ered trivial, e.g. that type lengths correlate with the number
of subtypes. For most type-based rules this correlation is not
statistically significant, but more complex types tend to be
longer, have higher arity and order, and result more function
application. A second block we see are SBFT formulas from
literaturewithOchiai, Tarantula, DStar, andOptimalP. This is
mathematically plausible, as they are proportional to 𝑛𝑒𝑓 , the
number of failing tests for this expression, in their formulas
(see table 7). Most rules do not have a significant correlation
with each other, and, except for the two blocks, there are no
other visible trends. Although this seems underwhelming,
we want to stress that most rules do not correlate. For exam-
ple, rTFail and rTFailFreq do not correlate significantly

Figure 7. Decision Tree for Pandoc-5 (scaled features,
classic-rules)

within our data, implying that the execution frequency is
not directly proportional to the number of tests (analogue
to rTPass and rTPassFreq). This finding motivates us to
investigate formulas focusing on frequency, as they seem
more distinct from test failures than expected.
In general, the lack of correlation proofs some trivial as-

sumptions wrong, motivating further research and adjust-
ments to existing formulas. We expect imperative programs
to have similar patterns, but they can only be found as clear
in functional programs. Inferred type information at the
expression level is uncommon in other paradigms, and inves-
tigating correlations between types, constraints, arity and
faults is out of reach for most imperative languages.

RQ1.D: Rule Correlations
Most rules do not correlate according to the Pearson coeffi-
cient. Type rules and popular SBFL formulas form (mostly
non-significant) trends within the correlations.

Attributes of SBFL Models
Logistic & Linear Regression. In both logistic and lin-

ear regression for both scaled and unscaled features, the
resulting weights result in significant variance, indicating
overfitting. For example, many type rules differ in logistic
regression polarity despite being correlated (see RQ1.D).

Decision Trees. Decision trees required a class-balanced
fitting using an entropy measure to produce sufficient re-
sults. A visible trend is the reproduction of the SBFL formula
rankings as in fig. 7. Given the effectiveness of Ochiai, as
observed in RQ1.B, this is an understandable result.

For the larger programs (pandoc-6& pandoc-7), the trees
often resulted in configurations that lean left or right with
single expression branches. Tree pruning could not address
this form of overfitting, as the resulting pruned trees remain
with a high entropy.

Explainable conditions, such as if it is a leaf, use Ochiai;
otherwise, Tarantula, were unfortunately not observed. Trees
that were striking to the authors are those that use one of
the well-performing formulas (e.g., DStar), as root of the
tree, and then use a niche rule such as rHamming, rRogot1
or rNumGoldFails, which apply to very few locations.

This shortcoming of decision trees is known andmotivates
the use of a random forest ensemble.

9

991

992

993

994

995

996

997

998

999

1000

1001

1002

1003

1004

1005

1006

1007

1008

1009

1010

1011

1012

1013

1014

1015

1016

1017

1018

1019

1020

1021

1022

1023

1024

1025

1026

1027

1028

1029

1030

1031

1032

1033

1034

1035

1036

1037

1038

1039

1040

1041

1042

1043

1044

1045

Haskell ’24, September 02–07, 2024, Milan, Italy Anon.

1046

1047

1048

1049

1050

1051

1052

1053

1054

1055

1056

1057

1058

1059

1060

1061

1062

1063

1064

1065

1066

1067

1068

1069

1070

1071

1072

1073

1074

1075

1076

1077

1078

1079

1080

1081

1082

1083

1084

1085

1086

1087

1088

1089

1090

1091

1092

1093

1094

1095

1096

1097

1098

1099

1100

Genetic Algorithms. A key observation is that genetic
algorithms (GAs) faced convergence challenges with specific
programs: pandoc-4, duckling-4cfe88ea, duckling-ea8a4f6d,
and duckling-28ddc3bf, exhausting the maximum number
of generations allocated without achieving early termination.
The non-convergence co-occurs with the absence of touched
faults. Our educated guess is that a it is hard for randomly
generated weights (that is, the initial population) to produce
any correct ranking, and b for the untouched faults the
individuals who classify faults are uniquely picking single
attributes and the combination skews the weights again.
Individuals that rank faults are fragile, and mutation and
combination lose beneficial attributes, stopping the genetic
search to stagnation.

RQ2.A: Development of SBFL Models
Most models struggled with forms of overfitting. Linear
and logistic regression, as well as decision trees, strug-
gled with the sparse data. Genetic algorithms face issues
converging for programs with untouched faults.

Generalizability of SBFL Models
Classifiers. When investigating the classifiers (decision

trees, random forests, and logistic regression), an early find-
ing was that all three generalize better on scaled features.
An overview of the transfer performance of the classifiers
is shown in fig. 8. We see the trends in which classifiers are
grouped according to their false and true positives. Logistic
regression produces many true positives and false positives
(≈90% false positives). Put in perspective, for many data
points, a logistic regressor will give 100 faulty candidates,
of which nine will be true faults. Although this is likely
frustrating for developers, it can be suitable for tooling (see
section 5.1).
The best performance with good precision was achieved

by random forests using only SBFL formulas. On average, an
ensemble of formula-based decision trees reports five faults,
of which ≈2.5 will be true faults. This is a convincing rate for
actual usage, given that the reported numbers are averages;
for many programs, random forests (and decision trees) were
not reporting faults as they were not certain enough. This
leads to a low number of true positives, but upon author
inspection, most of the actually suggested faults were either
true faults or reasonably close.
Throughout the configurations, the classic SBFL formu-

las performed best in all classifiers. This is due to their
good performance on data points with high faults for which
the original formulas also performed well (pandoc-7). The
all-rules and cherries find fewer faults and produce
more false positives, but are better at predicting faults of the
most challenging data points pandoc-4, duckling-4cfe88ea
and duckling-ea8a4f6d. Depending on the goals, the logis-
tic regression with cherry-configuration is able to predict

faults that were not touched by failing tests, at the cost of a
high noise ratio.

Regressors. Across the board, the regressors performed
better on the unscaled data and primarily produced good
Top50-scores on the data points with faults covered by failing
tests. Due to poor performance, we present only examples of
regressors when compared to data points that have locations
touched by failing tests. Most regressors performed worse
than existing formulas, with the exception of genetic algo-
rithms seen in fig. 9 (and Top10 in appendix fig. 12). We see
that especially for the Top10 genetic search produces much
better averages than the formulas.

We stress that the averaged results only indicate the most
fruitful configuration - the results varied greatly from regres-
sor to regressor and per target data point. Thus, we want to
highlight two types of well-formed searches in fig. 10. The
orange bars indicate the achieved Top50-score, while the
blue frame indicates the maximum possible faults.

Figure 10a show the results when using the weights orig-
inating from the genetic search over HLS-2 using classic
formulas. We observe that this configuration is well suited
for a few programs and poor for others, but tops the individ-
ual formulas in mean-Top50. In general, we noticed that the
small programs from HLS produced some of the best regres-
sors, probably because the smaller number of entries resulted
in smaller weights less prone to overfitting. Figure 10b are
the results retrieved from fitting original rules (i.e., only
rules novel from this work) on duckling-28ddc3bf. The
resulting weights produce Top50 suggestions for all data
points except pandoc-6. This model has broad generalizabil-
ity across the investigated programs and is one of the drivers
of the good median metrics of search-based Top50 results.

When looking for such individual results, we saw similar
trends (uneven and even distributions of predictions) across
all regressors, with genetic search producing the most visible
trends due to the best predictions.
The best results were achieved for data points without

faults executed by failing tests in which three configurations
with a Top50 of 1, when fittingMLPs on pandoc-4, pandoc-5
and pandoc-3be256efb with the original rules. Such small
variations are in the realm of expected randomness andmight
not be worth further investigation.

RQ2.B: Applicability of Models
Classifiers performed better for scaled rules, whereas re-
gressors had difficulties with unscaled features. Logistic
regression produces high recall, but suffers from false pos-
itives. Random forests produced a good ratio of true to
false positives, but did not have a high recall. Of the re-
gressors, only genetic search beat the original formulas
in average and median, especially in Top10.

10

1101

1102

1103

1104

1105

1106

1107

1108

1109

1110

1111

1112

1113

1114

1115

1116

1117

1118

1119

1120

1121

1122

1123

1124

1125

1126

1127

1128

1129

1130

1131

1132

1133

1134

1135

1136

1137

1138

1139

1140

1141

1142

1143

1144

1145

1146

1147

1148

1149

1150

1151

1152

1153

1154

1155

Functional Spectrums for Fault Localization Haskell ’24, September 02–07, 2024, Milan, Italy

1156

1157

1158

1159

1160

1161

1162

1163

1164

1165

1166

1167

1168

1169

1170

1171

1172

1173

1174

1175

1176

1177

1178

1179

1180

1181

1182

1183

1184

1185

1186

1187

1188

1189

1190

1191

1192

1193

1194

1195

1196

1197

1198

1199

1200

1201

1202

1203

1204

1205

1206

1207

1208

1209

1210

Figure 8. Transfer Performance of Classifiers

Figure 9. Averaged Top50-score for genetic search

5 Discussion
Quality of formulas. In general, the existing SBFL for-

mulas performed well to the point that they might be used
in development. The achieved rankings beat some of the
existing research in Java, when the difference in granularity
is taken into account: most research focuses on statements
or blocks, but even the expression level seems reasonable.
As formulas do not require training data and are easily ap-
plicable, they form attractive targets for Haskell tooling, e.g.,
suggesting points of interest on a failing PR or highlighting
code of failing test runs. It might be possible to adapt existing
formulas to Haskell by introducing the frequency of execu-
tions instead of binary coverage through tests. Another way
to get a better result is the reduction of a spectrum, possibly
through filtering for AST properties or types.
However, the results of this work also show that there

are unique problems with programs whose faults are not
(directly) executed by failing tests. For such programs and
maybe other tasks (defect prediction, test generation), novel

(a) Top50 from HLS-2 with original rules

(b) Top50 from duckling-28ddc3bf with original rules

Figure 10. Example performance of promising searchmodels

rules based on types or AST structure can prove successful.
With functional programming often used for domain-specific
languages or code generation, we expect faults of this kind to
be more prominent than in imperative programs. We suggest

11

1211

1212

1213

1214

1215

1216

1217

1218

1219

1220

1221

1222

1223

1224

1225

1226

1227

1228

1229

1230

1231

1232

1233

1234

1235

1236

1237

1238

1239

1240

1241

1242

1243

1244

1245

1246

1247

1248

1249

1250

1251

1252

1253

1254

1255

1256

1257

1258

1259

1260

1261

1262

1263

1264

1265

Haskell ’24, September 02–07, 2024, Milan, Italy Anon.

1266

1267

1268

1269

1270

1271

1272

1273

1274

1275

1276

1277

1278

1279

1280

1281

1282

1283

1284

1285

1286

1287

1288

1289

1290

1291

1292

1293

1294

1295

1296

1297

1298

1299

1300

1301

1302

1303

1304

1305

1306

1307

1308

1309

1310

1311

1312

1313

1314

1315

1316

1317

1318

1319

1320

that ensemble-style classifiers are used to utilize the best
of both worlds. For most bugs, the existing formulas seem
sufficient (or, one of them is), while unique features might
play a role heavily dependent on the programs structure.
Classifier fitted over multiple projects, also including bug-
free ones, are a promising next step.

Project & Test Structure. One recurring consideration
throughout all results was the strong dependency on the
project structure and the tests.
Duckling’s approach of unifying tests into a corpus of

examples makes it easy for contributors and allows for a
smoother execution against the generated code, while pos-
ing significant challenges for fault localization. Similarly,
many contributors (or users) to Pandoc report bugs by pro-
viding examples of failing documents that are translated
into a system-level regression test. This is very economi-
cal for the maintainers, but our results show that pandoc
programs with unit-level tests (pandoc-6 & pandoc-7) were
the most approachable for all algorithms and formulas. On
the other hand, the HLS data points make use of a great
degree of modularity; this is already visible, with both pro-
grams being plugins. This separation already leads to drasti-
cally smaller spectrums, and even more complicated issues
(hls-afac9b18 deleting lines on usage with other plugins)
were translatable into side-effect-free unit tests. We under-
stand that not every project can be modular to this extent,
but, especially given the size, number of contributors, and
changes in Pandoc and Duckling, fault localization can pay
off [5].
Closing our thoughts, we would like to stress that func-

tional programming is precisely the domain where excellent
modularity can be achieved. The greater the modularity, the
greater the applicability of tooling such as SBFL. For projects
that have a suitable test suite, even simple SBFL formulas
have immediate payoff.

5.1 Future Work
IDE integration. One future path would be to look at

the integration of spectrum-based fault localization into IDE
tools such as HLS, enabling users to get more out of their test
suite than just a pass/fail. Apart from technical challenges
in balancing performance and information, experiments can
identify user needs when engaging with such tooling.

Innocence. One way to extend this work is to introduce
the notion of innocence. Here, we focus on the suspiciousness
of a given statement, but in a typed setting, we can verify cer-
tain functions. This could involve functions that are verified
using tools such as SmallCheck, where we test every possible
invocation of a function of type, e.g. Bool -> a by applying
it to both True and False and checking that the output is
correct. It might be extended to other concepts, e.g. innocent
types or innocent modules from user-declaration. Innocent
locations can be excluded from the fault localization process.

6 Conclusion
This paper aims to extend spectrum-based fault localization
for Haskell and evaluate its applicability to real-world faults.
To achieve this, we implemented a Tasty ingredient that
allows the generation of spectrums with expression-level
granularity, including additional information on types and
identifiers. Making use of the richer information, we im-
plemented rules that capture the complexity of types, AST
structure, or identifiers and applied them to a total of 11
real-world programs. We used the rules to investigate the
attributes of the spectrums and to fit classifiers and regres-
sors. Our exploration uncovered unique kinds of failures:
faults that were not covered by failing tests. These failures
structured the results into two groups: for most programs,
the faults were covered by tests, and existing SBFL formulas
performed well and were only outperformed by regression
models that also make use of formulas as features. For the
faults not touched by failing tests, models based on addi-
tional information (e.g., types or identifiers) were necessary
to produce any correct prediction. However, these faults re-
main a challenging case and require further investigation.
The contributions of this work hopefully open up a broader
discussion of the applicability of SBFL for Haskell. The easy
adoption through a plugin allows developers and researchers
to experiment and provide information on user needs along-
side a greater variety of projects. Further insights in addition
to our initial investigation might also form a solid basis for
new Haskell-specialized formulas. Especially, the novel type
of failures requires approximation not directly based on test
failures, but exploits the project structure and types.

Why you should care about SBFL. One of the big selling
point of Haskell is the strong type systems and the resulting
compiler feedback. But even with strong types, errors can oc-
cur (see fig. 1) and require testing. While the compiler assists
the program, tools assist the programmer. Especially within
the boundaries of a strong type system in a lazy language, the
rich information of types and the lack of side effects allow for
better localization than imperative languages could dream
of. All efforts, whether from developers, fault localization
tools, tests, or compilers, can go hand in hand to provide
the best program quality with the least effort. Thanks to the
ongoing efforts of the Haskell Language Server project, it
is high time to introduce new software tooling for Haskell.
We hope that the insights provided by our work will provide
guidance when designing these tools.

12

1321

1322

1323

1324

1325

1326

1327

1328

1329

1330

1331

1332

1333

1334

1335

1336

1337

1338

1339

1340

1341

1342

1343

1344

1345

1346

1347

1348

1349

1350

1351

1352

1353

1354

1355

1356

1357

1358

1359

1360

1361

1362

1363

1364

1365

1366

1367

1368

1369

1370

1371

1372

1373

1374

1375

Functional Spectrums for Fault Localization Haskell ’24, September 02–07, 2024, Milan, Italy

1376

1377

1378

1379

1380

1381

1382

1383

1384

1385

1386

1387

1388

1389

1390

1391

1392

1393

1394

1395

1396

1397

1398

1399

1400

1401

1402

1403

1404

1405

1406

1407

1408

1409

1410

1411

1412

1413

1414

1415

1416

1417

1418

1419

1420

1421

1422

1423

1424

1425

1426

1427

1428

1429

1430

References
[1] Leonhard Applis and Annibale Panichella. 2023. HasBugs-Handpicked

Haskell Bugs. In 2023 IEEE/ACM 20th International Conference on Min-
ing Software Repositories (MSR). IEEE, 223–227.

[2] J. Blank and K. Deb. 2020. pymoo: Multi-Objective Optimization in
Python. IEEE Access 8 (2020), 89497–89509.

[3] Tom Britton, Lisa Jeng, Graham Carver, Paul Cheak, and Tomer
Katzenellenbogen. 2013. Reversible debugging software. Judge Bus.
School, Univ. Cambridge, Cambridge, UK, Tech. Rep 229 (2013).

[4] Rafael Caballero, Adrián Riesco, and Josep Silva. 2017. A survey of
algorithmic debugging. ACM Computing Surveys (CSUR) 50, 4 (2017),
1–35.

[5] Tung Dao, Na Meng, and ThanhVu Nguyen. 2023. Triggering Modes
in Spectrum-Based Multi-location Fault Localization. In Proceedings
of the 31st ACM Joint European Software Engineering Conference and
Symposium on the Foundations of Software Engineering (, San Francisco,
CA, USA,) (ESEC/FSE 2023). Association for Computing Machinery,
New York, NY, USA, 1774–1785. https://doi.org/10.1145/3611643.
3613884

[6] Kalyanmoy Deb. 2001. Multi-objective optimization using evolutionary
algorithms. Vol. 16. John Wiley & Sons.

[7] K Deb and RB Agrawal. 1995. Simulated binary crossover for continu-
ous search space. Complex systems 9, 2 (1995), 115–148.

[8] Maarten Faddegon and Olaf Chitil. 2015. Algorithmic debugging of
real-world haskell programs: deriving dependencies from the cost
centre stack. ACM SIGPLAN Notices 50, 6 (2015), 33–42.

[9] Ronald Fagin, Ravi Kumar, and Dakshinamurthi Sivakumar. 2003.
Comparing top k lists. SIAM Journal on discrete mathematics 17, 1
(2003), 134–160.

[10] Ruanqianqian Lisa Huang, Elizaveta Pertseva, Michael Coblenz, and
Sorin Lerner. [n. d.]. How do Haskell programmers debug? Plateau
Workshop.

[11] James A Jones and Mary Jean Harrold. 2005. Empirical evaluation of
the tarantula automatic fault-localization technique. In Proceedings
of the 20th IEEE/ACM international Conference on Automated software
engineering. 273–282.

[12] James A. Jones, Mary Jean Harrold, and John Stasko. 2002. Visualiza-
tion of Test Information to Assist Fault Localization. In Proceedings
of the 24th International Conference on Software Engineering (Orlando,
Florida) (ICSE ’02). Association for Computing Machinery, New York,
NY, USA, 467–477. https://doi.org/10.1145/581339.581397

[13] René Just, Darioush Jalali, and Michael D Ernst. 2014. Defects4J: A
database of existing faults to enable controlled testing studies for
Java programs. In Proceedings of the 2014 international symposium on
software testing and analysis. 437–440.

[14] Feng Li, Meng Wang, and Dan Hao. 2022. Bridging the Gap between
Different Programming Paradigms in Coverage-based Fault Localiza-
tion. In Proceedings of the 13th Asia-Pacific Symposium on Internetware.
75–84.

[15] Chao Liu, Xifeng Yan, Long Fei, Jiawei Han, and Samuel P Midkiff.
2005. SOBER: statistical model-based bug localization. ACM SIGSOFT
Software Engineering Notes 30, 5 (2005), 286–295.

[16] David Lo, Lingxiao Jiang, Aditya Budi, et al. 2010. Comprehensive
evaluation of association measures for fault localization. In 2010 IEEE
International Conference on Software Maintenance. IEEE, 1–10.

[17] Justin Lubin and Sarah E Chasins. 2021. How statically-typed func-
tional programmers write code. Proceedings of the ACM on Program-
ming Languages 5, OOPSLA (2021), 1–30.

[18] Simon Marlow, José Iborra, Bernard Pope, and Andy Gill. 2007. A
lightweight interactive debugger for Haskell. In Proceedings of the
ACM SIGPLAN workshop on Haskell workshop. 13–24.

[19] Michael D McKay, Richard J Beckman, and William J Conover. 2000.
A comparison of three methods for selecting values of input variables
in the analysis of output from a computer code. Technometrics 42, 1

(2000), 55–61.
[20] Brad L Miller, David E Goldberg, et al. 1995. Genetic algorithms,

tournament selection, and the effects of noise. Complex systems 9, 3
(1995), 193–212.

[21] Balázs Mosolygó, Norbert Vándor, Gábor Antal, and Péter Hegedűs.
2021. On the rise and fall of simple stupid bugs: a life-cycle analysis
of sstubs. In 2021 IEEE/ACM 18th International Conference on Mining
Software Repositories (MSR). IEEE, 495–499.

[22] Lee Naish, Hua Jie Lee, and Kotagiri Ramamohanarao. 2011. A model
for spectra-based software diagnosis. ACM Transactions on software
engineering and methodology (TOSEM) 20, 3 (2011), 1–32.

[23] Vu Nguyen, Sophia Deeds-Rubin, Thomas Tan, and Barry Boehm. 2007.
A SLOC counting standard. In Cocomo ii forum, Vol. 2007. Citeseer,
1–16.

[24] Chris Parnin and Alessandro Orso. 2011. Are automated debugging
techniques actually helping programmers?. In Proceedings of the 2011
international symposium on software testing and analysis. 199–209.

[25] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O.
Grisel, M. Blondel, P. Prettenhofer, R. Weiss, V. Dubourg, J. Vanderplas,
A. Passos, D. Cournapeau, M. Brucher, M. Perrot, and E. Duchesnay.
2011. Scikit-learn: Machine Learning in Python. Journal of Machine
Learning Research 12 (2011), 2825–2830.

[26] Manos Renieres and Steven P Reiss. 2003. Fault localization with
nearest neighbor queries. In 18th IEEE International Conference on
Automated Software Engineering, 2003. Proceedings. IEEE, 30–39.

[27] Thomas Reps, Thomas Ball, Manuvir Das, and James Larus. 1997. The
use of program profiling for softwaremaintenancewith applications to
the year 2000 problem. In Proceedings of the 6th European SOFTWARE
ENGINEERING conference held jointly with the 5th ACM SIGSOFT inter-
national symposium on Foundations of software engineering. 432–449.

[28] André Riboira and Rui Abreu. 2010. The gzoltar project: A graphical
debugger interface. In International Academic and Industrial Conference
on Practice and Research Techniques. Springer, 215–218.

[29] Qusay Idrees Sarhan and Árpád Beszédes. 2022. A Survey of Chal-
lenges in Spectrum-Based Software Fault Localization. IEEE Access 10
(2022), 10618–10639. https://doi.org/10.1109/ACCESS.2022.3144079

[30] Anish Tondwalkar, Rolph Recto, Westley Weimer, and Ranjit Jhala.
2016. Finding bugs in liquid haskell,-. (2016).

[31] Vanessa Vasconcelos and Mariza AS Bigonha. 2021. HaskellFL: A
Tool for Detecting Logical Errors in Haskell. International Journal of
Computer and Systems Engineering 15, 8 (2021), 479–493.

[32] W Eric Wong, Vidroha Debroy, Ruizhi Gao, and Yihao Li. 2013. The
DStar method for effective software fault localization. IEEE Transac-
tions on Reliability 63, 1 (2013), 290–308.

[33] W. Eric Wong, Ruizhi Gao, Yihao Li, Rui Abreu, and Franz Wotawa.
2016. A Survey on Software Fault Localization. IEEE Transactions on
Software Engineering 42, 8 (2016), 707–740. https://doi.org/10.1109/
TSE.2016.2521368

13

https://doi.org/10.1145/3611643.3613884
https://doi.org/10.1145/3611643.3613884
https://doi.org/10.1145/581339.581397
https://doi.org/10.1109/ACCESS.2022.3144079
https://doi.org/10.1109/TSE.2016.2521368
https://doi.org/10.1109/TSE.2016.2521368

1431

1432

1433

1434

1435

1436

1437

1438

1439

1440

1441

1442

1443

1444

1445

1446

1447

1448

1449

1450

1451

1452

1453

1454

1455

1456

1457

1458

1459

1460

1461

1462

1463

1464

1465

1466

1467

1468

1469

1470

1471

1472

1473

1474

1475

1476

1477

1478

1479

1480

1481

1482

1483

1484

1485

Haskell ’24, September 02–07, 2024, Milan, Italy Anon.

1486

1487

1488

1489

1490

1491

1492

1493

1494

1495

1496

1497

1498

1499

1500

1501

1502

1503

1504

1505

1506

1507

1508

1509

1510

1511

1512

1513

1514

1515

1516

1517

1518

1519

1520

1521

1522

1523

1524

1525

1526

1527

1528

1529

1530

1531

1532

1533

1534

1535

1536

1537

1538

1539

1540

Appendix

Table 7. Overview of the rules in the rules-based system.
Rules Description

Test-type count

rTFail & rTPass Total number of failing tests involving this location

rPropFail & rPropPass Number of failing QuickCheck tests involving this location

rUnitFail & rUnitPass Number of failing unit tests involving this location

rGoldenFail & rGoldenPass Number of failing golden tests involving this location

rOtherTestFail & rOtherTestPass Number of other failing tests involving this location

rTFailFreq & rTPassFreq Sums the number of evaluations in failing and passing tests in-
volving this location.

Formulas from SBFL literature 𝑛𝑒𝑝 /𝑛𝑒𝑓 is the number of passing/failing tests the expression is
involved in, while 𝑛𝑡𝑝 /𝑛𝑡𝑓 is the total number of passes/fails.

rJaccard
𝑛𝑒𝑓

𝑛𝑒𝑓 +𝑛𝑡𝑓 +𝑛𝑒𝑝

rHamming 𝑛𝑒𝑓 + 𝑛𝑡𝑝

rOptimal
{

−1 𝑖 𝑓 𝑛𝑡𝑓 > 0
𝑛𝑡𝑝 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

rOptimalP 𝑛𝑒𝑓 −
𝑛𝑒𝑝

𝑛𝑒𝑝 +𝑛𝑡𝑝 +1

rTarantula

𝑛𝑒𝑓

𝑛𝑒𝑓 +𝑛𝑡𝑓
𝑛𝑒𝑓

𝑛𝑒𝑓 +𝑛𝑡𝑓
+ 𝑛𝑒𝑝

𝑛𝑒𝑝 +𝑛𝑡𝑝

rOchiai
𝑛𝑒𝑓√︃

(𝑛𝑒𝑓 +𝑛𝑡𝑓) (𝑛𝑒𝑓 +𝑛𝑒𝑝)

rDStar k
(𝑛𝑒𝑓)

𝑘

𝑛𝑡𝑓 +𝑛𝑒𝑝

rRogot1 1
2 (

𝑛𝑒𝑓

2𝑛𝑒𝑓 +𝑛𝑡𝑓 +𝑛𝑒𝑝
+ 𝑛𝑡𝑝

2𝑛𝑡𝑝 +𝑛𝑡𝑓 +𝑛𝑒𝑝
)

AST structure-based rules See table 3

Type-based formula rules See table 4

14

1541

1542

1543

1544

1545

1546

1547

1548

1549

1550

1551

1552

1553

1554

1555

1556

1557

1558

1559

1560

1561

1562

1563

1564

1565

1566

1567

1568

1569

1570

1571

1572

1573

1574

1575

1576

1577

1578

1579

1580

1581

1582

1583

1584

1585

1586

1587

1588

1589

1590

1591

1592

1593

1594

1595

Functional Spectrums for Fault Localization Haskell ’24, September 02–07, 2024, Milan, Italy

1596

1597

1598

1599

1600

1601

1602

1603

1604

1605

1606

1607

1608

1609

1610

1611

1612

1613

1614

1615

1616

1617

1618

1619

1620

1621

1622

1623

1624

1625

1626

1627

1628

1629

1630

1631

1632

1633

1634

1635

1636

1637

1638

1639

1640

1641

1642

1643

1644

1645

1646

1647

1648

1649

1650

Figure 11. Pearson Correlation MatrixTable 8. Test-coverage within gathered spectrums

Program Expressions covered
by failing Tests

Expressions untouched
by failing tests

Faulty Expressions not
covered by failing tests

Faulty Expressions covered
by failing tests

hls-2 205 64 1 14

hls-afac 35 87 0 17

duckling-4cfe88ea 1791 297705 4 0

duckling-328e59eb 1165 275942 0 26

duckling-ea8a4f6d 2541 286195 5 0

duckling-28ddc3bf 2256 260307 0 5

pandoc-4 419 90669 12 0

pandoc-5 238 60410 0 8
pandoc-6 2175 57203 34 5
pandoc-7 2235 58839 34 38
pandoc-3be256efb 623 88149 0 6

15

1651

1652

1653

1654

1655

1656

1657

1658

1659

1660

1661

1662

1663

1664

1665

1666

1667

1668

1669

1670

1671

1672

1673

1674

1675

1676

1677

1678

1679

1680

1681

1682

1683

1684

1685

1686

1687

1688

1689

1690

1691

1692

1693

1694

1695

1696

1697

1698

1699

1700

1701

1702

1703

1704

1705

Haskell ’24, September 02–07, 2024, Milan, Italy Anon.

1706

1707

1708

1709

1710

1711

1712

1713

1714

1715

1716

1717

1718

1719

1720

1721

1722

1723

1724

1725

1726

1727

1728

1729

1730

1731

1732

1733

1734

1735

1736

1737

1738

1739

1740

1741

1742

1743

1744

1745

1746

1747

1748

1749

1750

1751

1752

1753

1754

1755

1756

1757

1758

1759

1760

Figure 12. Averaged Top10-score for genetic search

16

	Abstract
	1 Introduction
	1.1 Example
	1.2 Contributions

	2 Background and Related Work
	2.1 Related Work

	3 Implementation & Experiment Setup
	3.1 Spectrum Generation
	3.2 Rules
	3.3 Data
	3.4 Experimental Setup

	4 Results
	5 Discussion
	5.1 Future Work

	6 Conclusion
	References

